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We propose a market-based approach to the modelling of implied
volatility, in which the implied volatility surface is directly used as the
state variable to describe the joint evolution of market prices of
options and their underlying asset. We model the evolution of an
implied volatility surface by representing it as a randomly fluctuating
surface driven by a finite number of orthogonal random factors. Our
approach is based on a Karhunen–Loève decomposition of the daily
variations of implied volatilities obtained from market data on SP500
and DAX options.

We illustrate how this approach extends and improves the accuracy
of the well-known ‘sticky moneyness’ rule used by option traders for
updating implied volatilities. Our approach gives a justification for
the use of ‘Vegas’ for measuring volatility risk and provides a
decomposition of volatility risk as a sum of independent contributions
from empirically identifiable factors.

(J.E.L.: G130, C14, C31).

In the market for call/put options, option prices are often represented in

term of the Black–Scholes implied volatilities, obtained by inverting the

Black–Scholes formula given the market price of the option. It is empirically

observed that the implied volatility � t(K, T ) of a call option with exercise

price K and maturity date T depends on (K, T ). The function

� t : (K, T ) ! � t(K, T )

which represents this dependence is called the implied volatility surface at date

t. It summarizes the state of the options market at data t.

Two features of this surface have captured the attention of researchers in
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financial modelling. First, the non-flat instantaneous profile of the surface,

whether it be a ‘smile’, ‘skew’ or the existence of a term structrue, point out to

the insufficiency of the Black–Scholes model for matching a set of option

prices at a given time instant and have led to various generalizations of the

Black–Scholes model which aim at reproducing realistic instantaneous profiles

for the surface � t(K, T ). Second, the fact that the surfaces itself changes

randomly with time as a result of supply and demand on the options market

means that a good risk management model must not only fit the shape of

� t(K, T ) at a given date but also give realistic dynamics for � t(K, T ) in time.

This paper presents a non-technical summary of our recent work on a

market-based approach to the modelling of implied volatility, in which the

implied volatility surface is directly used as the state variable to describe the

joint evolution of market prices of options and their underlying asset. Our

model is built on empirical facts and captures statistical properties of implied

volatility dynamics in a parsimonious way.

We show how our stochastic implied volatility model allows a simple

description of the time evolution of a set of options and provides a rationale for

Vega hedging of portfolios of options. This modelling approach also allows us

to construct a Monte-Carlo framework for simulating scenarios for the joint

behaviour of a portfolio of call or put options, leading to a considerable gain in

computation time for scenario generation.

The paper is structured as follows. Section 1 introduces the implied

volatility surface and defines notations. Section 2 summarizes empirical find-

ings on dynamics of implied volatility surfaces which are the foundation of

our approach. Motivated by these facts, a factor model for implied volatility

compatible with empirical observations is proposed in section 3. Some proper-

ties of the model are discussed in section 4. Evolution of call option prices is

discussed in section 5. Section 6 discusses an application to Monte-Carlo

simulation of a portfolio of options. Section 7 summarizes the results and

discusses further applications.

1. Implied Volatility Surfaces

Recall that a European call option on a non-dividend paying asset S with

maturity date T and strike price K is defined as a contingent claim with a pay-

off of (ST � K)þ. Denoting by � ¼ T � t the time remaining to maturity, the

Black and Scholes (1973) formula for the value of this call option is

CBS(St, K, �, � ) ¼ St N (d1) � Ke�r�N (d2)(1)
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d1 ¼
�ln m þ � r þ � 2

2

� �
�
ffiffiffi
�

p

d2 ¼
�ln m þ � r � � 2

2

� �
�
ffiffiffi
�

p(2)

where m ¼ K=St is the moneyness and

N (u) ¼ (2�)�1=2

ðu

�1
exp � z2

2

� �
dz

Since the Black–Scholes price is strictly increasing with respect to the

volatility, it defines a one-to-one map between prices and volatilities:

8y 2](S � Ke�r(T� t))þ, S[, 9!� . 0, CBS(St, K, �, � ) ¼ y(3)

Consider now, in a market where the hypotheses of the Black–Scholes model

do not necessarily hold, a call option whose (observed) market price is denoted

by C�
t (K, T ). The Black–Scholes implied volatility � t(K, T ) of the option is

then defined as the value of the volatility parameter, which equates the market

price with the price given by the Black–Scholes formula:

9! � t(K, T ) . 0, CBS(S, K, �, � t(K, T )) ¼ C�
t (K, T )(4)

The Black–Scholes implied volatility thus defined is a widely used market

indicator used by all options market practitioners and, as such, should be an

object of interest for modelling the evolution of the options market.

From the implicit function theorem, one expects that, in general, � will

depend on t, S, T, K (and, of course, on the randomness ø!). For fixed (K, T ),

� t(K, T ) is, in general, a stochastic process and, for fixed t, its value depends

on the characteristics of the option: the maturity T and the strike level K. The

function � t : (K, T ) ! � t(K, T ) is called the implied volatility surface at date

t. Using the moneyness m ¼ K=St of the option, one can also represent the

implied volatility surface as a function of moneyness and maturity:

It(m, �) ¼ � t(mSt, t þ �)(5)

This representation is convenient because there is usually a range of money-

ness around m ¼ 1 for which the options are most liquid and, therefore, the

empirical data are most readily available. The implied volatility surface today

gives a snapshot of today’s market prices of vanilla options: given the current

term structure of interest rates and dividends, specifying the implied volatility

surface is equivalent to specifying prices of all vanilla options quoted on the

market.

A large body of empirical and theoretical literature deals with the profile

of the implied volatility surface for various markets as a function of (m, �) (or
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(K, T )) at a given date, i.e. with (t, St) fixed. While the Black–Scholes model

predicts a flat profile for the implied volatility surface It(m, �), it is a well-

documented empirical fact that it exhibits both a non-flat strike and term

structure (Das and Sundaram, 1999; Dumas et al., 1998; Heynen, 1993;

Rebonato, 1999). A typical illustration is given in Figure 1 in the case of DAX

index options.

A plethora of models have been proposed to model the instantaneous

profile in (m, �) of the implied volatility surface: local volatility models, jump-

diffusion models and stochastic volatility models with or without jumps.1

These ‘smile’ models are defined in terms of stochastic differential equations

whose parameters describe the infinitesimal evolution of the asset price: since

this evolution is not directly observed, calibration of model parameters to

market prices of options turns out to be an ill-posed problem whose numerical

solution is not trivial. However, even in cases where perfect calibration to

today’s option prices is achievable by a non-parametric model (for example, a

local volatility model), a perfect fit of the implied volatility surfaces does not

guarantee that the model will generate realistic future scenarios. This problem

can be seen in the shape of the future smile (that is, the smile for forward-start

options) generated by the model: many of these models, while giving good fits

to today’s implied volatility/call prices generate unrealistic forms for future

smiles, thus leading to a bias in prices of forward options.

As pointed out by Balland (2002), risk management of complex option

positions requires not only a model that can calibrate today’s market implied

volatilities but also a model which implies a realistic evolution of implied

1 See Avellaneda and Cont (2002) for recent reviews on these topics.

Figure 1: Average profile of the implied volatility of DAX options as a function of time to
maturity and moneyness, 1999–2001.
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volatility. To achieve this, we must first study the statistical properties of

implied volatility movements, reviewed in section 2.

2. Statistical Properties of Implied Volatility Surfaces

Empirical studies of the behaviour of implied volatilities of exchange-traded

options on various market indices (SP500, FTSE, DAX and others) point to some

statistical properties that seem to be common to these markets. These studies

focus on three different aspects: profile across strikes (smile patterns), profile

across maturities (term structure) and time series behaviour of implied volati-

lities. Each of these dependencies has been studied separately in different data

sets: see Alexander (2001), Avellaneda and Zhu (1997), Das and Sundaram

(1999), Heynen (1993), Heynen et al. (1994), Skiadopoulos et al. (2000), Fengler

et al. (2000) and Hafner and Wallmeier (2001). Using a Karhunen–Loève

decomposition of time series of volatility surfaces, Cont and Da Fonseca (2002)

performed a joint study of dynamics of implied volatilities for all strikes and

maturities for various index options. For more details and a survey of empirical

studies we refer to Cont and Da Fonseca (2001, 2002) and references therein. We

summarize here the main properties observed in implied volatility time series:

1 At a given date, the implied volatility surface has a non-flat profile and

exhibits both strike and term structure.

2 The shape of the implied volatility surface undergoes deformation in time.

3 Implied volatilities display high (positive) autocorrelation and mean

reverting behaviour.

4 The variance of the daily log-variations in implied volatility can be

satisfactorily explained in terms of a small number of principal compon-

ents (two or three).

5 The first principal component reflects an overall shift in the level of all

implied volatilities.

6 The second principal component reflects opposite movements in (out of

the money) call and put implied volatilities.

7 The third principal component reflects changes in the convexity of the

surface.

8 Movements in implied volatility are not perfectly correlated with move-

ments in the underlying asset.

9 Shifts in global level of implied volatilities are negatively correlated with

the returns of the underlying asset.

10 Relative movements of implied volatilities have little correlation with the

underlying.

11 The projections of the surface on its principal components (‘principal

component processes’) exhibit high (positive) autocorrelation and mean

reversion over a time-scale close to a month.
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12 The autocorrelation structure of principal component processes is well

approximated by AR(1)/Ornstein–Uhlenbeck process.

See Cont and Da Fonseca (2001, 2002) and references therein for more details.

3. A Model for the Joint Evolution of the Underlying and the Implied

Volatility Surface

Based on the these observations, we propose a model for joint evolution of

an asset S(t) and the implied volatility surface associated to options written on

this asset. Section 3.1 describes the stochastic evolution of the implied

volatilities. Section 3.2 then describes the dynamics of the underlying asset.

3.1. A Factor Model for the Implied Volatility Surface

Based on these empirical results, we have proposed (Cont and Da Fonseca

2002) a flexible class of models which is compatible with these observations.

The state variables are (It, St) where St is the underlying asset and

It : [mmin, mmax] 3 [�min, �max] ! [0, 1[(6)

is a smooth surface representing the implied volatility surface at date t. The

implied volatility surface It is modelled as a stationary random surface

evolving in a low dimensional manifold of surfaces.

More precisely, following Cont and Da Fonseca (2002), the (log-)implied

volatility surface Xt(m, �) ¼ ln It(m, �) is represented by its components on

an orthonormal basis ( f k , k ¼ 1 . . . d):

ln It(m, �) ¼ X t(m, �) ¼ X1(m, �) þ
Xd

k¼1

xk(t) f k(m, �)(7)

xk(t) ¼ hXt, f ki

h f j, f ki ¼
ðð

f j(m, �) f k(m, �)dm d� ¼ � j,k(8)

where the components xk are Ornstein–Uhlenbeck processes driven by inde-

pendent noise sources Z k , which can be Wiener or jump processes:

Xt(m, �) ¼
Xd

k¼1

xk(t) f k(m, �)(9)

dxk(t) ¼ �ºk(xk(t) � xk)dt þ ªk dZ k(t) k ¼ 1 . . . d(10)

Here ºk represents the speed of mean reversion of along the kth eigenmode
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and ªk is the volatility of implied vols along this direction. In empirical data,

º�1
k is found to be close to a month (Cont and Da Fonseca, 2002).

Typically, we can take d < 3, d ¼ 2 already gives a good approximation

to the observed deformations of the surface over several months. For the

principal directions of deformation of the surface, one may estimate them

directly from the data by principal component analysis (Cont and Da Fonseca,

2002): empirical examples are shown in Figures 2, 3 and 4. Alternatively, one

may use ‘stylized’ versions to represent f 1 as a level effect, f 1 as a slope effect

and f 2 as a change in curvature:

f 1(m, �) ¼ a1(11)

f 2(m, �) ¼ a2(�)m þ b2(12)

f 3(m, �) ¼ a3 m2 þ b3 m þ c3(13)

The coefficients may be chosen to have a dependence in � so as to reproduce

the term structure of implied volatility. For example, one may choose

a2 ¼ A2 exp(�ª2�)

to represent the decay of the skew with time to maturity as in Rebonato (1999).

Figure 2: First principal component f1 of daily implied volatility variations for SP500 index
options. Shocks along this direction, which account for around 80 per cent of the daily variance of

implied volatilities, can be interpreted as a level effect.
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3.2. Evolution of the Underlying Asset

To compute dynamics of option prices, one needs to specify the dynamics

of the underlying asset. One possibility is to describe the

dSt

St

¼ �dt þ Æ0(t)dZ0
t þ
Xd

k¼1

Æk(t)dZ k(t)(14)

Figure 3: Second principal component f2 of daily implied volatility variations for SP500 index
options.

Figure 4: Third principal component f3 of daily implied volatility variations for SP500 index
options.
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where Z k are independent noise terms and Z0 represents the idiosyncratic risk

in the underlying asset which is uncorrelated with the options market. For

example, Z k , k ¼ 0 . . . d can be independent Wiener processes.

Æ0(t) 6¼ 0 leads to an imperfect correlation between the underlying asset

and the implied volatility surface. Empirical results indicate a strong negative

correlation between movements in the level of implied volatility and the

underlying returns. This can be captured by imposing Æ1(t) , 0. The magni-

tude of Æi, i . 2 is expected to be small (Cont and Da Fonseca, 2002).

Let us discuss now the relation between the two processes. Let F S
t , F I

t be

respectively the filtrations generated by (St) and It(m, �). In a one-factor

complete market model, such as a local volatility model, the option prices can

be attained by dynamic hedging strategies invoving the underlying asset only,

so the information contained in the option prices is redundant with respect to

the information in F S
t : It(m, �) is an F S

t -adapted process.

In the model presented above, this is not the case: in general, neither F I
t is

contained in F S
t , nor the other way round. This is an important property of the

model and corresponds indeed to the real situation encountered on the market:

option prices can be affected by factors other than the underlying asset; and,

inversely, although market prices of options do give some information on the

underlying asset, there is not enough information on the options market to

retrieve, in a unique way, the implied dynamics of the underlying asset. This is,

by the way, the fundamental reason the problem of calibrating smile models to

option prices is ill-posed in general.

Arbitrage restrictions on stochastic models for implied volatilities were

considered in Schönbucher (1999), Brace et al. (2001) and Ledoit and Santa

Clara (1999) in a risk neutral framework. Note that here we have to consider,

from a risk management perspective, the real dynamics of the implied

volatilities and not the risk neutral dynamics, which may be very different. For

example, it is shown in Schönbucher (1999) that, in a model with a single

implied volatility, the risk neutral implied volatility has a mean-fleeing

(opposite of mean reverting!) behaviour. The relation between risk neutral and

historical dynamics is discussed in more detail in Cont and Durrleman (2002).

3.3. Nature of Noise Terms

As observed in Cont and Da Fonseca (2002), while it may appear more

convenient to choose Wiener processes as noise sources, this is not necessarily

the best choice. First, from an empirical point of view, the movements in

implied volatility can exhibit jumps: in the case of FTSE implied volatilities,

the second principal component process is observed to have heavy-tailed

increments with jump-like movements (Cont and Da Fonseca, 2002, figs 22

and 23). This observation pleads for the inclusion of jump terms in the

evolution of It (in this case, in Z2). Second, as shown by Balland (2002), in the
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limiting case where the implied volatility surface It(m, �) is a non-flat surface

constant in time, i.e. It(m, �) ¼ I0(m, �), the risk neutral dynamics of the

underlying asset is a jump process with independent increments. Although a

typical sample path may be very different under the historical dynamics which

we model here, the trajectories of the price will remain discontinuous in both

cases. This observation pleads for including a jump term in the evolution of St

otherwise the ‘fixed smile’ case cannot be included.

4. Properties

Now let us outline some of the properties of the proposed stochastic

model.

1 The implied volatilities have a random behaviour in time, but have a

smooth dependence in (K, T ).

2 Implied volatilities It(m, �) and � t(K, T ) are positive. In the case where

the noise terms are taken to be Wiener processes, It(m, �), is, in fact, a log

normal random variable.

3 Implied volatility It(m, �) is mean reverting with a mean reversion time

that is empirically found to be around one or two months. This means that,

for short maturity options (with maturity less than one month for ex-

ample), the implied volatility surface will not move away too much from

its current position. Therefore, ‘forward smiles’ will be similar to the

current smile if one is interested in looking a month or so ahead of the

current time. For forward-start options starting in several months (which is

long compared to the mean reversion time), It(m, �) will approximately

behave according to the invariant measure of (9) so it will resemble the

typical long-term average of its profile. Figure 1 shows the profile of such

an average smile (here, averaged over a sample of 2 years, 1999–2001).

One can readily observe that the skew is not flattened, contrarily to the

problem encountered for forward smiles in local volatility models.

In particular, in the stationary case (where It(m, �) is a stationary random

surface) 3-month implied volatilities will have the same distribution at any

starting date in the future, so the 3-month forward smile will be a

stationary random curve i.e. its statistical properties will not depend on

the starting time of the option.

4 Calibration to market implied volatilities is simply reduced to specifying

the initial condition: x0(m, �) ¼ ln I0(m, �): any market smile/term struc-

ture can be exactly incorporated into the model.

5 The model allows easy evaluation of any portfolio of vanilla options: the

price of any call option Ct(T , K) is simply given by the Black–Scholes

formula:
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Ct(K, T ) ¼ CBS(St, K, �, � t(K, T ))

¼ CBS St, K, �, It

K

St

, T � t

� �� �
(15)

This is obviously true at the current date but also at any future date in any

scenario generated in a Monte-Carlo simulation of the factor model. In

particular, it suggests a simple way of generating joint scenarios for

implied volatilities (see section 6). This property should be contrasted for

example with the approach of Derman and Kani (1998) where the local

volatility surface is modelled as a random surface: in that case, the impact

on option prices is complicated and requires solving a PDE.

5. Evolution of European Call Options

As mentioned above, the price of a European call (or put) option is simply

given by applying the Black–Scholes formula to the current implied volatility

surface. The dynamic evolution of a call option is therefore given by Ito’s

formula:

dCt(K, T ) ¼ @CBS

@ t
dt þ @CBS

@S
dSt þ

@CBS

@�
d� t(K, T )

þ 1

2

@ 2CBS

@S2
d , S . t þ

1

2

@ 2CBS

@�2
d , � t(K, T ) .

þ @ 2CBS

@�@S
d , � t(K, T ), S . t

¼ Łt dt þ ˜ t dSt þ Vega d� t(K, T )(16)

where �(K, T ) is the implied volatility for a given strike K and maturity date

T. One therefore requires the evolution of the fixed-strike volatility �(K, T ),

the quadratic variations of the fixed-strike volatility, the quadratic variation of

S and their joint variation.

Proposition 1 Evolution of fixed strike implied volatilities The fixed-strike

implied volatility �(K, T ) follows the dynamics

d� t(K, T )

� t(K, T )
¼ Æ2(t)

2

Xd

k¼1

xk(t)
K

St

@m f k

 !2
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þ
Xd

k¼1

ºk xk f k þ
ª2

k

2
f 2

k þ
ªk KÆk(t)

St

@m f k

2
664

þ xk(t) @m fk

K(Æ2
t � ��

Xd

j¼1

ª jÆ j(t) f j)

St

þ K2Æ2
t@

2
m f k

2St

� ºk f k � @� f k

0
BB@

1
CCA
3
775

dt

þ
Xd

k¼1

ªk f k �
KÆ j(t)

St

Xd

j¼1

xj(t)@m f j

0
@

1
A

2
4

3
5dW j(t)

(17)

Given the stochastic equation governing a fixed-strike implied volatility, it is

now straightforward to derive the evolution of a European call option by

substituting (17) in (16):

Proposition 2 Evolution of European call option The price of a European

call option Ct(T , K) follows the dynamics

dCt(T , K) ¼ M tdt þ st

Xd

j¼0

N (d1)Æ j(t)

"

þn(d1)� t(K, T )
ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
ª j f j � Æ j(t)

Xd

k¼1

xk(t)
K

St

@m f k

 !#
dW

j
t

¼ M tdt þ St˜ t(T , K)
Xd

j¼0

Æ j(t)dW
j
t

þ Vega t(T , K)
Xd

j¼0

ª j f j � Æ j(t)
Xd

k¼1

xk(t)
K

St

@m f k

" #
dW

j
t(18)

where M t is a drift term; see Cont and Durrleman (2002) for details. The

random terms are thus decomposed into a sum of two terms:

• a term proportional to the Black–Scholes delta of the option, already

present in a local volatility model

• a term proportional to the Black–Scholes vega, representing the volatility

risk of the option.

Note that the sensitivities appearing in (18) are the usual Black–Scholes

sensitivities and are not model dependent, showing that the usual Black–

Scholes vegas will be the relevant sensitivities to compute in this modelling

approach.
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This evolution equation is verified by the call option price Ct(K, T ) up to

a stopping time

Ł ¼ inffT � �min, Ł0g(19)

Ł0 ¼ inf t > 0,
K

St

=2 [mmin, mmax]

� �
(20)

This makes sense since at the stopping time Ł

• either the option has moved too far from the money and the impact of

implied volatility on its time value is negligible, or

• the option is too close to maturity (a few days typically) and again its time

value is close to zero.

In both cases, the information given by the implied volatility is irrelevant

for pricing the option and the behaviour of the option is not governed any more

by its implied volatility but by its intrinsic value.

The continuous time equation (18) is not useful for numerical simulation

for which one should of course use the integrated form (15). However, (18) can

be used to compute a Delta-Vega hedge: the delta and vega of any position in

vanilla options can be offset in this model by a portfolio consisting in the

underlying asset and d liquid vanilla options. The situation is similar to the one

in fixed income markets where, in a d-factor interest rate model, any fixed

income position can be hedged with d bonds plus the numeraire.

6. Monte-Carlo Simulation of Portfolios of Options

A common way of measuring the risk of a complex market position in

vanilla options is to examine the profit and loss (P&L) of the portfolio in

various plausible market scenarios and quantify the risk of the position by a

measure of dispersion on the P&L distribution such as a moment, a quantile

(VaR) or any other indicator. A systematic computational approach used in this

context is a Monte-Carlo simulation: one starts by generating N scenarios øi,

i ¼ 1, . . ., N for the underlying asset(s) using a stochastic model M; then one

evaluates the portfolio’s P&L in each scenario at some given time horizon t.

To evaluate the portfolio in each scenario, one must be able to price each

option in each scenario. This can either be done using a model which is

sufficiently tractable to provide a ‘closed’ form pricing formula: examples are

the Black–Scholes model, an affine model such as the Heston stochastic

volatility model or affine jump-diffusion models. One can then compute the

value of options at time t in scenario øi using as input the current value of the

underlying St(øi). Unfortunately, such models are unable to capture/calibrate

the initial profile of the market implied volatility surfaces (especially the term

structure of the implied volatilities (Das and Sundaram, 1999; Gatheral, 2001;
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Busca and Cont, 2002; Tompkins, 2001), so one cannot incorporate the

information on the initial smiles into them.

An alternative approach is then to use a model for the underlying asset

which is capable of fitting the initial volatility surface. This is the case for

example if one uses a non-parametric local volatility model (Dupire model):

dSt

St

¼ �dt þ � (t, St)dW t(21)

where the local volatility surface � (:, :) is calibrated to match the initial

implied volatility surface I0(:, :). Prices of call options are not given in closed

form but may be computed for all future dates and scenarios by solving

numerically the generalized Black–Scholes partial differential equation:

@C

@ t
þ rx

@C

@x
þ x2� 2(t, x)

2

@ 2C

@x2
� rC(t, x; T , K) ¼ 0(22)

8x > 0 C(T , x; T , K) ¼ (x � K)þ(23)

A known problem with this approach is that, when the calibration is done at

t ¼ 0 and the model is translated forward in time, it produces a future smile

pattern that flattens out: the ‘forward smile’ cannot be time invariant (Bere-

stycki et al., 2002). This is related to the fact that the local volatility surface is

parametrized by absolute maturity T (as opposed to relative maturity �).

Our mean reverting model for the implied volatility surface provides a

simple approach to the simulation of scenarios for the joint evolution of a

portfolio of call and put options which avoids these problems.

First, since the initial condition I0 is chosen to be the current market

surface, there is no issue with calibration so the model can take into account

the current volatility smile. Second, as noted in section 4, the implied

volatilities for forward-start options behave in a similar way to those today: in

the special case of the stationary model, in fact, the model becomes time

invariant. In particular, the forward smile does not flatten out: it will fluctuate

around its long-term average.

Moreover, since the parameters are estimated to match the statistical

properties of the time evolution of implied volatilities, the scenarios generated

for future smiles will be similar to those seen in historical data and coherent

with the type of evolution seen in the market.

A popular approach for marking to market exotic option deals is to use

static or quasi static replication (Carr et al., 1998; Allen and Padovani, 2002):

this technique reduces an exotic position to a portfolio of vanilla calls and puts.

In this case, such a portfolio can be readily priced in a Monte-Carlo sample

path using the same approach as above.

Such approaches have already been considered in the case where the at-

the-money implied vol is perturbed by random shocks while the shape of the

smile is fixed: Malz (2001) uses this approach for stress-testing; see also
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Rosenberg (2000). Our framework allows an extension to the case of a random

smile/surface. A similar approach is proposed by Härdle and Schmidt (2000).

7. Conclusion

We have outlined a modelling approach based on using the implied

volatility surface as a stochastic state variable representing the dynamics of the

option market. After describing the empirical aspects such a model should

incorporate, we have given a family of models which exhibit these properties.

The basic framework is that of a linear factor model for the log of implied

volatilities with mean reverting Ornstein–Uhlenbeck processes used as factors.

The structure of the model allows for easy estimation of the parameters from

historical data.

In addition to simplicity, the random surface model possesses two interest-

ing features: first, any initial smile and term structure of implied volatilities

can be input into the model; and second, it generates a realistic future evolution

for the implied volatility surface in contrast with local volatility or stochastic

volatility models.

These models allows a simple approach for quantifying and hedging of

volatility risk, defined in terms familiar to practitioners in the options market.

We suggest, in particular, an application to Monte-Carlo simulation of option

portfolios for computing volatility risk exposures.

Another field in which this approach has potentially interesting applica-

tions is the hedging and risk management of ‘volatility derivatives’ such as

volatility swaps or options on implied volatility.

These issues shall be addressed in a forthcoming work.
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