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Measuring the risk of a financial portfolio involves two steps: estimating the loss distribution
of the portfolio from available observations and computing a ‘risk measure’ that summarizes
the risk of the portfolio. We define the notion of ‘risk measurement procedure’, which includes
both of these steps, and introduce a rigorous framework for studying the robustness of risk
measurement procedures and their sensitivity to changes in the data set. Our results point to a
conflict between the subadditivity and robustness of risk measurement procedures and show
that the same risk measure may exhibit quite different sensitivities depending on the
estimation procedure used. Our results illustrate, in particular, that using recently proposed
risk measures such as CVaR/expected shortfall leads to a less robust risk measurement
procedure than historical Value-at-Risk. We also propose alternative risk measurement
procedures that possess the robustness property.
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1. Introduction

One of the main purposes of quantitative modeling in

finance is to quantify the risk of financial portfolios. In

connection with the widespread use of Value-at-Risk and

related risk measurement methodologies and the Basel

committee guidelines for risk-based requirements for

regulatory capital, methodologies for measuring of the

risk of financial portfolios have been the focus of recent

attention and have generated a considerable theoretical

literature (Artzner et al. 1999, Acerbi 2002, 2007,

Föllmer and Schied 2002, 2004, Frittelli and Rosazza

Gianin 2002). In this theoretical approach to risk

measurement, a risk measure is represented as a map

assigning a number (a measure of risk) to each random

payoff. The focus of this literature has been on the

properties of such maps and requirements for the risk

measurement procedure to be coherent, in a static or

dynamic setting.
Since most risk measures such as Value-at-Risk or

Expected Shortfall are defined as functionals of the

portfolio loss distribution, an implicit starting point is
the knowledge of the loss distribution. In applications,
however, this probability distribution is unknown and
should be estimated from (historical) data as part of the
risk measurement procedure. Thus, in practice, measuring
the risk of a financial portfolio involves two steps:
estimating the loss distribution of the portfolio from
available observations and computing a risk measure that
summarizes the risk of this loss distribution. While these
two steps have been considered and studied separately,
they are intertwined in applications and an important
criterion in the choice of a risk measure is the availability
of a method for accurately estimating it. Estimation or
mis-specification errors in the portfolio loss distribution
can have a considerable impact on risk measures, and it is
important to examine the sensitivity of risk measures to
these errors (Gourieroux et al. 2000, Gourieroux and
Liu 2006).

1.1. A motivating example

Consider the following example, based on a data set of
1000 loss scenarios for a derivatives portfolio*Corresponding author. Email: rama.cont@columbia.edu
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incorporating hundreds of different risk factors.y
The historical Value-at-Risk (VaR) i.e. the quantile of
the empirical loss distribution, and the Expected Shortfall
(Acerbi 2002) of the empirical loss distribution, computed
at the 99% level are, respectively, 8.887 M$ and 9.291M$.

To examine the sensitivity of these estimators to the
addition of a single observation in the data set, we
compute the (relative) change (in %) in the estimators
when a new observation is added to the data set. Figure 1
displays this measure of sensitivity as a function of the
size of the additional observation. While the levels of the
two risk measures are not very different, they display
quite different sensitivities to a change in the data set, the
Expected Shortfall being much more sensitive to large
observations while VaR has a bounded sensitivity. While
Expected Shortfall has the advantage of being a coherent
risk measure (Artzner et al. 1999, Acerbi 2002), it appears
to lack robustness with respect to small changes in the
data set.

Another point, which has been left out of most studies
on risk measures (with the notable exception of
Gourieroux and Liu 2006), is the impact of the estimation
method on these sensitivity properties. A risk measure
such as Expected Shortfall (ES) can be estimated in
different ways: either directly from the empirical loss
distribution (‘historical ES’) or by first estimating a
parametric model (Gaussian, Laplace, etc.) from the
observed sample and computing the Expected Shortfall
using the estimated distribution.

Figure 2 shows the sensitivity of the Expected Shortfall
for the same portfolio as above, but estimated using three
different methods. We observe that different estimators
for the same risk measure exhibit very different sensitiv-
ities to an additional observation (or outlier).

These examples motivate the need for assessing the
sensitivity and robustness properties of risk measures in
conjunction with the estimation method being used to
compute them. In order to study the interplay of a risk

measure and its estimation method used for computing it,
we define the notion of risk measurement procedure as a
two-step procedure that associates with a payoff X and a
data set x¼ (x1, . . . , xn) of size n a risk estimate b� ðxÞ
based on the data set x. This estimator of the ‘theoretical’
risk measure �(X ) is said to be robust if small variations
in the loss distribution—resulting either from estimation
or mis-specification errors—result in small variations in
the estimator.

1.2. Contribution of the present work

In the present work, we propose a rigorous approach for
examining how estimation issues can affect the computa-
tion of risk measures, with a particular focus on robustness
and sensitivity analysis of risk measurement procedures,
using tools from robust statistics (Huber 1981, Hampel et
al. 1986). In contrast to the considerable literature on risk
measures (Artzner et al. 1999, Kusuoka 2001, Acerbi 2002,
2007, Föllmer and Schied 2002, Rockafellar and Uryasev
2002, Tasche 2002), which does not discuss estimation
issues, we argue that the choice of the estimation method
and the risk measure should be considered jointly using the
notion of risk estimator.

We introduce a qualitative notion of ‘robustness’ for a
risk measurement procedure and a way of quantifying it
via sensitivity functions. Using these tools we show that
there is a conflict between coherence (more precisely,
the subadditivity) of a risk measure and the robustness,
in the statistical sense, of its commonly used estimators.
This consideration goes against the traditional arguments
for the use of coherent risk measures and therefore merits
discussion. We complement this abstract result by
computing measures of sensitivity, which allow us to
quantify the robustness of various risk measures with
respect to the data set used to compute them. In
particular, we show that the same ‘risk measure’ may
exhibit quite different sensitivities depending on the
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Figure 1. Empirical sensitivity (in percentage) of the historical
VaR at 99% and historical ES at 99%.
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Figure 2. Empirical sensitivity (in percentage) of the ES at 99%
estimated with diverse methods.

yData courtesy of Société Générale Risk Management unit.
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estimation procedure used. These properties are studied in
detail for some well-known examples of risk measures:
Value-at-Risk, Expected Shortfall/CVaR (Acerbi 2002,
Rockafellar and Uryasev 2002, Tasche 2002) and the class
of spectral risk measures introduced by Acerbi (2007).
Our results illustrate, in particular, that historical
Value-at-Risk, while failing to be sub-additive, leads to
a more robust procedure than alternatives such as
Expected shortfall.

Statistical estimation and sensitivity analysis of risk
measures have also been studied by Gourieroux et al.
(2000) and Gourieroux and Liu (2006). In particular,
Gourieroux and Liu (2006) consider non-parametric
estimators of distortion risk measures (which includes
the class studied in this paper) and focus on the
asymptotic distribution of these estimators. By contrast,
we study their robustness and sensitivity using tools from
robust statistics.

Methods of robust statistics are known to be relevant in
quantitative finance. Czellar et al. (2007) discuss robust
methods for estimation of interest-rate models.
Dell’Aquila and Embrechts (2006) discuss robust estima-
tion in the context of extreme value theory. Heyde et al.
(2007), which appeared simultaneously with the first
version of this paper, discuss some ideas similar to those
discussed here, but in a finite data set (i.e.
non-asymptotic) framework. We show that, using appro-
priate definitions of consistency and robustness, the
discussion can be extended to a large-sample/asymptotic
framework which is the usual setting for discussion of
estimators. Our asymptotic framework allows us to
establish a clear link, absent in Heyde et al. (2007),
between properties of risk estimators and those of risk
measures.

1.3. Outline

Section 2 recalls some basic notions on distribution-based
risk measures and establishes the distinction between a
risk measure and a risk measurement procedure. We show
that a risk measurement procedure applied to a data set
can be viewed as the application of an effective risk
measure to the empirical distribution obtained from this
data and give examples of effective risk measures
associated with various risk estimators.

Section 3 defines the notion of robustness for a risk
measurement procedure and examines whether this prop-
erty holds for commonly used risk measurement proce-
dures. We show, in particular, that there exists a conflict
between the subadditivity of a risk measure and the
robustness of its estimation procedure.

In section 4 we define the notion of sensitivity function
for a risk measure and compute sensitivity functions for
some commonly used risk measurement procedures.
In particular, we show that, while historical VaR has a
bounded sensitivity to a change in the underlying data
set, the sensitivity of Expected Shortfall estimators is
unbounded. We discuss in section 5 some implications of
our findings for the design of risk measurement proce-
dures in finance.

2. Estimation of risk measures

Let (�, F , P) be a given probability space representing

market outcomes and L0 be the space of all random

variables. We denote by D the (convex) set of cumulative

distribution functions (cdf ) on R. The distribution of a

random variable X is denoted FX2D, and we write X � F

if FX¼F. The Lévy distance (Huber 1981) between two

cdfs F, G2D is

d ðF,GÞ ¼
4
inff"4 0 :

F ðx� "Þ � " � GðxÞ � F ðxþ "Þ þ ", 8x 2 Rg:

The upper and lower quantiles of F2D of order �2 (0, 1)
are defined, respectively, by

qþ� ðF Þ ¼
4
inffx 2 R : F ðxÞ4�g � q�� ðF Þ

¼
4
inffx 2 R : F ðxÞ � �g:

Abusing notation, we denote q�� ðX Þ ¼ q�� ðFXÞ. For p� 1

we denote by Dp the set of distributions having a finite pth

moment, i.e. Z
R

jxjpdF ðxÞ51,

and by Dp
� the set of distributions whose left tail has a

finite p moment. We denote �(F ) the mean of F2D1 and

�2(F ) the variance of F2D2. For any n� 1 and any

x¼ (x1, . . . , xn)2R
n,

F emp
x ðxÞ ¼

4 1

n

Xn
i¼1

Ifx�xig

denotes the empirical distribution of the data set x;

Demp will denote the set of all empirical distributions.

2.1. Risk measures

The ‘Profit and Loss’ (P&L) or payoff of a portfolio over a

specified horizon may be represented as a random

variable X2L�L0(�,F ,P), where negative values for

X correspond to losses. The set L of such payoffs is

assumed to be a convex cone containing all constants.

A risk measure on L is a map � :L!R assigning to each

P&L X2L a number representing its degree of riskiness.
Artzner et al. (1999) advocated the use of coherent risk

measures, defined as follows.

Definition 2.1 (coherent risk measure (Artzner et al.

1999)): A risk measure � :L!R is coherent if it is

(1) monotone (decreasing): �(X )� �(Y ) provided

X�Y;
(2) cash-additive (additive with respect to cash reserves):

�(Xþ c)¼ �(X )� c for any c2R;
(3) positive homogeneous: �(�X )¼ ��(X ) for any �� 0;
(4) sub-additive: �(XþY )� �(X )þ �(Y ).

The vast majority of risk measures used in finance

are statistical, or distribution-based risk measures,

Robustness and sensitivity analysis of risk measurement procedures 595
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i.e. they depend on X only through its distribution FX:

FX¼FY ) �ðX Þ ¼ �ðY Þ:

In this case, � can be represented as a map on the set of
probability distributions, which we still denote by �.
Therefore, by setting

�ðFXÞ ¼
4
�ðX Þ,

we can view � as a map defined on (a subset of ) the set of
probability distributions D.

We focus on the following class of distribution-based
risk measures, introduced by Acerbi (2002) and Kusuoka
(2001), which contains all examples used in the literature:

�mðX Þ ¼ �

Z 1

0

q�u ðX ÞmðduÞ, ð1Þ

where m is a probability measure on (0, 1). Let Dm be the
set of distributions of r.v. for which the above risk
measure is finite. �m can then be viewed as a map
�m :Dm}R. Notice that if the support of m does not
contain 0 or 1, then Dm¼D.

Three cases deserve particular attention.

. Value at Risk (VaR). This is the risk measure
that is frequently used in practice and corre-
sponds to the choice m¼ �� for a fixed �2 (0, 1)
(usually �� 10%), that is

VaR�ðF Þ ¼
4
� q�� ðF Þ: ð2Þ

Its domain of definition is all D.
. Expected shortfall (ES). This corresponds to

choosing m as the uniform distribution over
(0,�), where �2 (0, 1) is fixed:

ES�ðF Þ ¼
4 1

�

Z �

0

VaRuðF Þdu: ð3Þ

In this case, Dm ¼ D
1
�, the set of distributions

having an integrable left tail.
. Spectral risk measures (Acerbi 2002, 2007). This

class of risk measures generalizes ES and
corresponds to choosing m(du)¼�(u)du,
where � : [0, 1]! [0,þ1) is a density on [0, 1]
and u}�(u) is decreasing. Therefore,

��ðF Þ ¼
4

Z 1

0

VaRuðF Þ�ðuÞdu: ð4Þ

If �2Lq(0, 1) (but not in Lqþ") and �� 0
around 1, then Dp

� � Dm, where p�1þ q�1¼ 1.

For any choice of the weight m, �m defined in (1) is
monotone, additive with respect to cash and positive
homogeneous. The subadditivity of such risk measures
has been characterized as follows (Kusuoka 2001,
Föllmer and Schied 2002, Acerbi 2007).

Proposition 2.2 (Kusuoka 2001, Föllmer and Schied 2002,
Acerbi 2007): The risk measure �m defined in (1) is
sub-additive (hence coherent) on Dm if and only if it is a
spectral risk measure.

As a consequence, we recover the well-known facts
that ES is a coherent risk measure, while VaR is not.

2.2. Estimation of risk measures

Once a (distribution-based) risk measure � has been
chosen, in practice one has first to estimate the P&L
distribution of the portfolio from available data and then
apply the risk measure � to this distribution. This can be
viewed as a two-step procedure.

(1) Estimation of the loss distribution FX: one can use
either an empirical distribution obtained from a
historical or simulated sample or a parametric
form whose parameters are estimated from avail-
able data. This step can be formalized as a function
from X ¼[n�1R

n, the collection of all possible data
sets, to D; if x2X is a data set, we denote bFx the
corresponding estimate of FX.

(2) Application of the risk measure � to the estimated
P&L distribution bFx, which yields an estimatorb� ðxÞ ¼4 �ðbFxÞ for �(X ).

We call the combination of these two steps a risk
measurement procedure.

Definition 2.3 (risk measurement procedure): A risk
measurement procedure (RMP) is a couple (M, �), where
� :D�!R is a risk measure and M :X !D� an estimator
for the loss distribution.

The outcome of this procedure is a risk estimatorb� : X ! R defined as

x�b� ðxÞ ¼4 �ðbFxÞ,

that estimates �(X ) given the data x (see diagram).

R

= ◦

2.2.1. Historical risk estimators. The historical estimatorb� h associated with a risk measure � is the estimator
obtained by applying � to the empirical P&L distribution
(sample cdf ) bFx ¼ F emp

x :b� hðxÞ ¼ �ðF emp
x Þ:

For a risk measure �m, as in (1),

b� h
mðxÞ ¼ �mðF

emp
x Þ ¼ �

Xn
i¼1

wn,ixðiÞ, x 2 R
n,

where x(k) is the kth least element of the set {xi}i�n, and
the weights are equal to

wn,i¼
4
m

i� 1

n
,
i

n

� �
for i ¼ 1, . . . , n� 1,

wn,n ¼ m
n� 1

n
, 1

� �
:
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Historical estimators are L-estimators in the sense of

Huber (1981).

Example 2.4: Historical VaR� is given bydVaRh
�ðxÞ ¼ �xðbn�cþ1Þ, ð5Þ

where bac denotes the integer part of a2R.

Example 2.5: The historical expected shortfall ES� is

given by

cESh�ðxÞ ¼ � 1

n�

Xbn�c
i¼1

xðiÞ þ xðbn�cþ1Þðn�� bn�cÞ

 !
: ð6Þ

Example 2.6: The historical estimator of the spectral

risk measure �� associated with � is given by

b� h
� ðxÞ ¼ �

Xn
i¼1

wn,ixðiÞ, where wn,i ¼

Z i=n

ði�1Þ=n

�ðuÞdu: ð7Þ

2.2.2. Maximum likelihood estimators. In the para-
metric approach to loss distribution modeling, a para-

metric model is assumed for FX and parameters are

estimated from data using, for instance, maximum

likelihood. We call the risk estimator obtained the

‘maximum likelihood risk estimator’ (MLRE). We discuss

these estimators for scale families of distributions, which

include as a special case (although a multidimensional

one) the common variance–covariance method for VaR

estimation. Let F be a centered distribution. The scale

family generated by the reference distribution F is

defined by

DF¼
4
fF ð	 j �Þ : �4 0g, where F ðx j �Þ ¼

4
F

x

�

� �
:

If F2Dp ( p� 1), then DF�D
p and it is common to

choose F with location 0 and scale 1, so that F (	|�) has
location 0 and scale �2. In line with common practice in

short-term risk management we assume that the risk

factor changes have location equal to zero. Two examples

of scale families of distributions that we will study are:

. the Gaussian family where F has density

f ðxÞ ¼
1ffiffiffiffiffiffi
2p
p exp �

x2

2

� �
,

. the Laplace or double exponential family where

F has density

f ðxÞ ¼
1

2
exp �jxjð Þ:

The Maximum Likelihood Estimator (MLE)b� ¼ b� mleðxÞ of � is defined by

b� ¼ arg:max�40

Xn
i¼1

ln f ðxi j �Þ, ð8Þ

and solves the following nonlinear equation:Xn
i¼1

xi
f 0ðxi=b� Þ
f ðxi=b� Þ ¼ �nb�: ð9Þ

Let � be a positively homogeneous risk measure,

then we have

�ðF ð	 j �ÞÞ ¼ �ðF Þ�:

Therefore, if the scale parameter is estimated by maxi-

mum likelihood, the associated risk estimator of � is then

given by b� ðxÞ ¼ cb� mleðxÞ:

Example 2.7 (MLRE for a Gaussian family): The MLE

of the scale parameter in the Gaussian scale family is

b�ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x2i

s
: ð10Þ

The resulting risk estimators are given by b� ðxÞ ¼ cb�ðxÞ,
where, depending on the risk measure considered, c is

given by

c ¼ VaR�ðF Þ ¼ �z�,

c ¼ ES�ðF Þ ¼
expf�z2�=2g

�
ffiffiffiffiffiffi
2p
p ,

c ¼ ��ðF Þ ¼ �

Z 1

0

zu�ðuÞdu,

where z� is the �-quantile of a standard normal

distribution.

Example 2.8 (ML risk estimators for Laplace

distributions): The MLE of the scale parameter in the

Laplace scale family is

b�ðxÞ ¼ 1

n

Xn
i¼1

jxij: ð11Þ

Note that this scale estimator is not the standard deviation

but the Mean Absolute Deviation (MAD). The resulting

risk estimator is

b� ðxÞ ¼ cb�ðxÞ, ð12Þ

where c takes the following values, depending on the risk

measure considered (we assume �� 0.5):

c ¼ VaR�ðF Þ ¼ � lnð2�Þ,

c ¼ ES�ðF Þ ¼ 1� lnð2�Þ,

c ¼ ��ðF Þ ¼ �

Z 1=2

0

lnð2uÞ�ðuÞduþ

Z 1

1=2

lnð2� 2uÞ�ðuÞdu:

2.3. Effective risk measures

In all of the above examples we observe that the risk

estimator b� ðxÞ, computed from a data set x¼ (x1, . . . , xn),

can be expressed in terms of the empirical distribution

Femp
x ; in other words, there exists a risk measure �eff

such that, for any data set x¼ (x1, . . . ,xn), the risk

estimator b� ðxÞ is equal to the new risk measure �eff
applied to the empirical distribution

�eff ðF
emp
x Þ ¼

4 b� ðxÞ: ð13Þ
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We will call �eff the effective risk measure associated with

the risk estimator b�. In other words, while � is the risk

measure we are interested in computing, the effective risk

measure �eff is the risk measure that the procedure defined

in definition 2.3 actually computes.
So far, the effective risk measure �eff is defined for all

empirical distributions by (13). Consider now a risk

estimator b� that is consistent with the risk measure � at

F2D�, that is

b� ðX1, . . . ,XnÞ !
n!1

�ðF Þ a.s.,

for any i.i.d. sequence Xi�F. Consistency of a risk

estimator for a class of distributions of interest is a

minimal requirement to ask for. If b� is consistent with the

risk measure � for F2Deff�D�, we can extend �eff to Deff

as follows: for any sequence (xi)i�1 such that

1

n

Xn
i¼1

If	�xig !
d
F ð	Þ 2 Deff,

we define

�effðF Þ ¼
4

lim
n!1

b� ðx1, . . . ,xnÞ: ð14Þ

Consistency guarantees that �eff (F ) is independent of the

chosen sequence.

Definition 2.9 (effective risk measure): Letb� : X ! R be

a consistent risk estimator of a risk measure � for a class

Deff of distributions. There is a unique risk measure

�eff :Deff}R such that

. �eff ðF
emp
x Þ ¼

4 b� ðxÞ for any data set

x¼ (x1, . . . , xn)2X ;
. �eff ðF Þ ¼

4
limn!1b� ðx1, . . . , xnÞ for any

sequence (xi)i�1 such that

1

n

Xn
i¼1

If	�xig !
d
F ð	Þ 2 Deff:

Equation (13), defining the effective risk measure,

allows us in most examples to characterize �eff explicitly.
As shown in the examples below, �eff may be quite

different from � and lacks many of the properties � was

initially chosen for.

Example 2.10 (historical VaR): The empirical quantiledVaRh
� is a consistent estimator of VaR� for any F2D such

that qþ� ðF Þ ¼ q�� ðF Þ. Otherwise, dVaRh
�ðX1, . . . ,XnÞ may

not have a limit as n!1. Therefore, the effective risk

measure associated with dVaRh
� is VaR� restricted to

the set

Deff ¼ fF 2 D : qþ� ðF Þ ¼ q�� ðF Þg:

Example 2.11 (historical estimator of ES and spectral risk

measures): A general result on L-estimators by Van

Zwet (1980) implies that the historical estimator of any

spectral risk measure �� (in particular of the ES) is

consistent with �� at any F where the risk measure is

defined. Therefore, the effective risk measure associated

with b� h
� coincides with ��. The same remains true even if

the density � is not decreasing, so that �� is not a spectral
risk measure.

Example 2.12 (Gaussian ML risk estimator): Consider
the risk estimator introduced in example 2.7. The
associated effective risk measure is defined on D2 and
given by

�eff ðF Þ ¼ c�ðF Þ, where �ðF Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
R

x2 dF ðxÞ

s
:

Example 2.13 (Laplace ML risk estimator): Consider
the risk estimators introduced in example 2.8. The
associated effective risk measure is defined on D1 and
given by

�eff ðF Þ ¼ c�ðF Þ, where �ðF Þ ¼

Z
R

jxjdF ðxÞ:

Notice that, in both of these examples, the effective risk
measure �eff is different from the original risk measure �.

3. Qualitative robustness

We now define the notion of qualitative robustness of a
risk estimator and use it to examine the robustness of the
various risk estimators considered above.

3.1. C-Robustness of a risk estimator

Fix a set C
D representing the set of ‘plausible’ loss
distributions, containing all the empirical distributions:
Demp
C. In most examples the class C is specified via an
integrability condition (e.g., existence of moments) in
which case it automatically contains all empirical
distributions. Consider an interior element F2C, i.e. for
any �40, there exists G2C, with G 6¼F, such that
d(G,F )� �. We call a (risk) estimator C-robust at F if
the law of the estimator is continuous with respect to a
change in F (remaining in C ) uniformly in the size n of the
data set.

Definition 3.1: A risk estimator b� is C-robust at F if, for
any "40, there exist �40 and n0� 1 such that, for all
G2C,

d ðG,F Þ � �¼) d ðLnðb�,GÞÞ,Lnðb�,F ÞÞ � ", 8n � n0,

where d is the Lévy distance.

When C¼D, i.e. when any perturbation of the distri-
bution is allowed, the previous definition corresponds to
the notion of qualitative robustness (also called asymptotic
robustness) as outlined by Huber (1981). This case is
not generally interesting in econometric or financial
applications since requiring robustness against all pertur-
bations of the model F is quite restrictive and excludes
even estimators such as the sample mean.

Obviously, the larger the set of perturbations C, the
harder it is for a risk estimator to be C-robust. In the
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remainder of this section we will assess whether the risk
estimators previously introduced are C-robust w.r.t. a
suitable set of perturbations C.

3.2. Qualitative robustness of historical risk estimators

The following generalization of a result of Hampel et al.

(1986) is crucial for the analysis of robustness of historical
risk estimators.

Proposition 3.2: Let � be a risk measure and F2C
D�.
If b� h, the historical estimator of �, is consistent with � at
every G2C, then the following are equivalent:

(1) the restriction of � to C is continuous (w.r.t. the Lévy
distance) at F;

(2) b� h is C-robust at F.

A proof of proposition 3.2 is given in appendix A.
From this proposition, we obtain the following corollary

that provides a sufficient condition on the risk measure to
ensure that the corresponding historical/empirical estima-
tor is robust.

Corollary 3.3: If � is continuous in C, then b� h is C-robust
at any F2C.

Proof: Fix G2C and let (Xn)n�1 be an i.i.d. sequence
distributed as G. Then, by the Glivenko–Cantelli

Theorem we have, for almost all !,

d ðF emp
Xð!Þ,GÞ �!

n!1
0, X ¼ ðX1, . . . ,XnÞ:

By continuity of � at G it holds that, again for

almost all !, b� ðXð!ÞÞ ¼ �ðF emp
Xð!ÞÞ ! �ðGÞ,

and therefore b� is consistent with � at G. A simple
application of proposition 3.2 concludes. œ

Our analysis will use the following important result
adapted from Huber (1981, theorem 3.1). For a measure
m on [0, 1] let

Am¼
4
f� 2 ½0, 1� : mðf�gÞ4 0g

be the set of values where m puts a positive mass.
We remark that Am is empty for a continuous m (as in the
definition of spectral risk measures).

Theorem 3.4: Let �m be a risk measure of the form (1).

If the support of m does not contain 0 or 1, then �m is
continuous at any F2D� such that qþ� ðF Þ ¼ q�� ðF Þ for any
�2Am. Otherwise, �m is not continuous at any F2D�.

In other words, a risk measure of the form (1) can be
continuous at some F if and only if its computation does

not involve any extreme quantile (close to 0 or 1.)
In this case, continuity is ensured provided F is contin-
uous at all points where m has a point mass.

3.2.1. Historical VaR�. In this case, Am¼ {�}, so
combining corollary 3.3 and theorem 3.4 we have the
following.

Proposition 3.5: The historical estimator of VaR� is
C�-robust at any F2C�, where

C�¼
4
fF 2 D : qþ� ðF Þ ¼ q�� ðF Þg:

In other words, if the quantile of the (true) loss
distribution is uniquely determined, then the empirical
quantile is a robust estimator.

3.2.2. Historical estimator of ES and spectral risk

measures. Let �� defined in (4) be in terms of a density
� in Lq(0, 1), so that D�¼D

p ( p and q are conjugate.)

However, here we do not assume that � is decreasing, so
that �� need not be a spectral risk measure, although it is

still in the form (1).

Proposition 3.6: For any F2Dp, the historical estimator
of �� is Dp-robust at F if and only if, for some "40,

�ðuÞ ¼ 0, 8u 2 ð0, "Þ [ ð1� ", 1Þ, ð15Þ

i.e. � vanishes in the neighborhood of 0 and 1.

Proof: We have seen in section 2.3 that b� h
� is consistent

with �� at any F2D�. If (15) holds for some ", then the
support of m (recall that m(du)¼�(u)du) does not contain
0 or 1. As Am is empty, theorem 3.4 yields continuity of �
at any distribution in D�. Hence, we have D�-robustness

of b� at F thanks to corollary 3.3.
On the contrary, if (15) does not hold for any ", then 0

or 1 (or both) are in the support of m and therefore �� is
not continuous at any distribution in D�, in particular at

F. Therefore, by proposition 3.2 we conclude that b� is not
D�-robust at F. œ

An immediate, but important consequence is the

following.

Corollary 3.7: The historical estimator of any spectral

risk measure �� defined on Dp is not Dp-robust at any
F2Dp. In particular, the historical estimator of ES� is not
D

1-robust at any F2D1.

Proof: It is sufficient to observe that, for a spectral risk
measure, the density � is decreasing and therefore it
cannot vanish around 0, otherwise it would vanish on the

entire interval [0, 1]. œ

Proposition 3.6 illustrates a conflict between subaddi-

tivity and robustness: as soon as we require a
(distribution-based) risk measure �m to be coherent, its
historical estimator fails to be robust (at least when all

possible perturbations are considered).

3.2.3. A robust family of risk estimators. We have just
seen that ES� has a non-robust historical estimator.
However, we can remove this drawback by slightly

modifying its definition. Consider 05�15�251 and
define the risk measure

1

�2 � �1

Z �2

�1

VaRuðF Þdu:
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This is simply the average of VaR levels across a range of
loss probabilities. As

�ðuÞ ¼
1

�2 � �1
I�15u5�2

vanishes around 0 and 1, proposition 3.6 shows that the
historical (i.e. using the empirical distribution directly)
risk estimator of this risk measure is D1-robust. Of course,
the corresponding risk measure is not coherent since � is
not decreasing. Note that, for �151/n, where n is the
sample size, this risk estimator is indistinguishable from
the historical Expected Shortfall! Yet, unlike Expected
Shortfall estimators, it has good robustness properties as
n!1. One can also consider a discrete version of the
above risk measure:

1

k

Xk
j¼1

VaRuj ðF Þ, 05 u1 5 	 	 	 5 uk 5 1,

which enjoys similar robustness properties.

3.3. Qualitative robustness of the maximum likelihood
risk estimator

We now discuss the qualitative robustness for MLRE in a
scale family of a risk measure �m defined as in (1). First,
we generalize the definition of the scale Maximum
Likelihood Estimator b� mleðxÞ ¼

4
�mleðF emp

x Þ given in equa-
tions (8) and (9) for distributions that do not belong
to Demp.

Let DF be the scale family associated with the distri-
bution F2D and assume that �(F )¼ 0, �(F )¼ 1 and F
admits a density f. Define the function

 ðxÞ ¼
4 @

@�
ln

1

�
f

x

�

� �� �	 

�¼1

¼ �1� x
f 0ðxÞ

f ðxÞ
, x 2 R:

ð16Þ

The ML estimator �mle(G ) of the scale parameter �(G )
for G2DF corresponds to the unique � that solves

	ð�,GÞ ¼
4

Z
 

x

�

� �
GðdxÞ ¼ 0, for G 2 DF: ð17Þ

By defining D ¼ {G2D :
R
j (x)jG(dx)51}, we can

extend the definition of �mle(G ) to all G2D . Note that
when G =2DF, �

mle(G ) may exist if G2D but does not
correspond to the ML estimator of the scale parameter
of G. Moreover, from definition (17), we notice that if we
compute the ML estimator of the scale parameter for a
distribution G emp

x 2 Demp we recover the MLE b� mleðxÞ

introduced in equations (8) and (9). In the examples
below, we have computed the function  for the Gaussian
and Laplace scale families.

Example 3.8 (Gaussian scale family): The function  g

for the Gaussian scale family is

 gðxÞ ¼ �1þ x2, ð18Þ

and we immediately conclude that D g¼D
2.

Example 3.9 (Laplace scale family): The function  l for
the Laplace scale family is equal to

 lðxÞ ¼ �1þ jxj, ð19Þ

and we obtain D l¼D
1.

The following result exhibits conditions on the function
 under which the MLE of the scale parameter is weakly
continuous on D .

Theorem 3.10 (weak continuity of the scale MLE): Let
DF be the scale family associated with the distribution F2D
and assume that �(F )¼ 0, �(F )¼ 1 and F admits a
density f. Suppose now that  , defined as in (16), is even,
increasing on R

þ, and takes values of both signs. Then, the
following two assertions are equivalent:

. �mle :D }R
þ, defined as in (17), is weakly

continuous at F2D ;
.  is bounded and 	(�, F )X

R
 (x/�)F (dx)¼ 0

has a unique solution �¼ �mle(F ) for all F2D .

A proof is given in appendix A. Using the above result,
we can now study the qualitative robustness of parametric
risk estimators for Gaussian or Laplace scale families.

Proposition 3.11 (non-robustness of Gaussian and
Laplace MLRE): Gaussian (respectively Laplace)
MLRE of cash-additive and homogeneous risk measures
are not D2-robust (respectively D1-robust) at any F in D2

(respectively in D1).

Proof: We detail the proof for the Gaussian scale family.
The same arguments hold for the Laplace scale family.
Let us consider a Gaussian MLRE of a translation
invariant and homogeneous risk measure, denoted byb� ðxÞ ¼ cb� mleðxÞ. First of all we notice that the function
 g associated with the MLE of the scale parameter of a
distribution belonging to the Gaussian scale family is
even, and increasing on R

þ. Moreover, it takes values of
both signs. Secondly, we recall that the effective risk
measure associated with the Gaussian ML risk estimator
is �eff (F )¼ c�mle(F ) for all F2Deff¼D g¼D

2. Therefore,
as  g is unbounded, by using theorem 3.10, we know that
�eff is not continuous at any F2D2. As the
Gaussian MLRE considered b� verifies b� ðxÞ ¼ c�effhðxÞ,
and is consistent with �eff at all F2D

2 by construction, we
can apply proposition 3.2 to conclude that, for F2D2,b� is
not D2-robust at F. œ

4. Sensitivity analysis

In order to quantify the degree of robustness of a risk
estimator, we now introduce the concept of the sensitivity
function.

Definition 4.1 (sensitivity function of a risk
estimator): The sensitivity function of a risk estimator
at F2Deff is the function defined by

SðzÞ ¼ Sðz;F Þ ¼
4

lim
"!0þ

�eff ð"�z þ ð1� "ÞF Þ � �eff ðF Þ

"
,

for any z2R such that the limit exists.
S(z; F ) measures the sensitivity of the risk estimator to

the addition of a new data point in a large sample.
It corresponds to the directional derivative of the effective
risk measure �eff at F in the direction �z2D. In the
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language of robust statistics, S(z;F ) is the influence

function (Costa and Deshayes 1977, Deniau et al. 1977,

Huber 1981, Hampel et al. 1986) of the effective risk

measure �eff and is related to the asymptotic variance of

the historical estimator of � (Huber 1981, Hampel

et al. 1986).

Remark 1: If D� is convex and contains all empirical

distributions, then "�zþ (1� ")F2D� for any "2 [0, 1],
z2R and F2D�. These conditions hold for all the risk

measures we are considering.

4.1. Historical VaR

We have seen above that the effective risk measure

associated with dVaRh
� is the restriction of VaR� to

Deff ¼ C� ¼ fF 2 D : qþ� ðF Þ ¼ q�� ðF Þg:

The sensitivity function of the historical VaR� has the

following simple explicit form.

Proposition 4.2: If F2D admits a strictly positive

density f, then the sensitivity function at F of the historical

VaR� is

SðzÞ ¼

1��
f ðq�ðF ÞÞ

, if z5 q�ðF Þ,

0, if z ¼ q�ðF Þ,

� �
f ðq�ðF ÞÞ

, if z4 q�ðF Þ:

8><>: ð20Þ

Proof: First we observe that the map u} q(u)X qu(F ) is

the inverse of F and so it is differentiable at any u2 (0, 1)

and we have

q0ðuÞ ¼
1

F 0ðqðuÞÞ
¼

1

f ðquðF ÞÞ
:

Fix z2R and set, for "2 [0, 1), F"¼ "�zþ (1� ")F, so that

F�F0. For "40, the distribution F" is differentiable at

any x 6¼ z, with F 0" ðxÞ ¼ ð1� "Þ f ðxÞ4 0, and has a jump

(of size ") at the point x¼ z. Hence, for any u2 (0, 1) and

"2 [0, 1), F"2Cu, i.e. q�u ðF"Þ ¼ qþu ðF"Þ ¼
4
qu ðF"Þ. In

particular,

q�ðF"Þ ¼
q �

1�"

� �
, for �5 ð1� "ÞF ðzÞ,

q ��"
1�"

� �
, for � � ð1� "ÞF ðzÞ þ ",

z, otherwise.

8<: ð21Þ

Assume now that z4q(�), i.e. F(z)4�; from (21)

it follows that

q�ðF"Þ ¼ q
�

1� "

� �
, for "5 1�

�

F ðzÞ
:

As a consequence,

SðzÞ ¼ lim
"!0þ

VaR�ðF"Þ � VaR�ðF0Þ

"
¼ �

d

d"
q�ðF"Þj"¼0

¼ �
d

d"
q

�

1� "

� �
"¼0
¼ �

1

f ðqð�=ð1� "ÞÞÞ

�

ð1� "Þ2

� �
"¼0

¼ �
�

f ðq�ðF ÞÞ
:

The case q(�)5z is handled in a very similar way. Finally,

if z¼ q(�), then, again by (21), we have q�(F")¼ z for any

"2 [0, 1). Hence,

SðzÞ ¼ �
d

d"
q�ðF"Þj"¼0 ¼ 0,

and we conclude. œ

This example shows that the historical VaR� has a

bounded sensitivity to a change in the data set, which

means that this risk estimator is not very sensitive to a

small change in the data set.

4.2. Historical estimators of Expected Shortfall and
spectral risk measures

We now consider a spectral risk measure �� defined by a

weight function � as in (4).

Proposition 4.3: Consider a distribution F with a density

f40. Assume the following.

(1) Z 1

0

u

f ðquðF ÞÞ
�ðuÞdu51:

(2) The risk measure is only sensitive to the left tail

(losses)

9u0 2 ð0, 1Þ, 8u4 u0, �ðuÞ ¼ 0:

(3) The density f is increasing in the left tail: 9x050,

f increasing on (�1, x0).

The sensitivity function at F2D� of the historical

estimator of �� is then given by

SðzÞ ¼ �

Z F ðzÞ

0

u

f ðquðF ÞÞ
�ðuÞduþ

Z 1

F ðzÞ

1� u

f ðquðF ÞÞ
�ðuÞdu:

We note that the assumptions in the proposition are

verified for Expected Shortfall and for all commonly used

parametric distributions in finance: Gaussian, Student-t,

double-exponential, Pareto (with exponent41), etc.

Proof: Using the notation introduced in the proof of

proposition 4.2 we have

SðzÞ ¼ lim
"!0þ

Z 1

0

VaRuðF"Þ � VaRuðF Þ

"
�ðuÞdu:

We will now show that the order of the integral and

the limit 
! 0 can be interchanged using a domi-

nated convergence argument. First note that

lim"!0þ "
�1(VaRu(F"))�VaRu(F )) exists, and is finite

for all u2 (0, 1). Define �u¼ inf{F(x0), u0} and consider


040. By the mean value theorem, for any u� �u(1� "):

8
 � 
0, 9� 2 ð0, 
Þ,

VaRuðF"Þ ¼ VaRuðF0Þ � "
u

ð1� �Þ2f ðqðu=ð1� �ÞÞÞ
:
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Therefore, we have

VaRuðF"Þ � VaRuðF Þ

"

 
�

u

ð1� �Þ2 f ðqðu=ð1� �ÞÞÞ

�
u

ð1� "0Þ
2 f ðqðu=ð1� �ÞÞÞ

, �5 " � "0,

�
u

ð1� "0Þ
2 f qðuÞð Þ

2 L1ð�Þ, f, q increasing,

so that we can apply dominated convergence

SðzÞ ¼

Z 1

0

lim
"!0þ

VaRuðF"Þ � VaRuðF Þ

"
�ðuÞdu

¼

Z 1

0

�
d

d"
quðF"Þ

� �
"¼0

�ðuÞdu

¼ �

Z F ðzÞ

0

u

f ðquðF ÞÞ
�ðuÞduþ

Z 1

F ðzÞ

1� u

f ðquðF ÞÞ
�ðuÞdu,

thanks to proposition 4.2. œ

Since the effective risk measure associated with histor-

ical ES� is ES� itself, defined on
D1
� ¼ fF 2 D :

R
x�F ðdxÞ51g, an immediate conse-

quence of the previous proposition is the following.

Corollary 4.4: The sensitivity function at F 2 D1
� for

historical ES� is

SðzÞ ¼
� z
�þ

1��
� q�ðF Þ � ES�ðF Þ, if z � q�ðF Þ,

�q�ðF Þ � ES�ðF Þ, if z � q�ðF Þ.

	
This result shows that the sensitivity of historical ES�

is linear in z, and thus unbounded. This means that this

risk measurement procedure is less robust than the
historical VaR�.

4.3. ML risk estimators for Gaussian distributions

We have seen that the effective risk measure associated
with Gaussian maximum likelihood estimators of
VaR, ES, or any spectral risk measure is

�eff ðF Þ ¼ c�ðF Þ, F 2 Deff ¼ D
2,

where c¼ �(Z ), Z � N(0, 1), is a constant depending only
on the risk measure � (we are not interested in its explicit
value here).

Proposition 4.5: The sensitivity function at F2D2 of the

Gaussian ML risk estimator of a positively homogeneous
risk measure � is

SðzÞ ¼
�c

2

z

�

� �2
�1

� �
:

Proof: Let, for simplicity, �¼ �(F ). Fix z2R and set, as

usual, F"¼ (1� ")Fþ "�z ("2 [0, 1)); observe that F"2D
2

for any ". If we set �(")X c�(F"), with c¼ �(N(0, 1)), then
we have S(z)¼ �0(0). It is immediate to compute

�2ðF"Þ ¼

Z
R

x2F"ðdxÞ ¼ ð1� "Þ

Z
R

x2F ðdxÞ þ "z2 � "z2

¼ ð1� "Þð�2Þ þ "z2 � "2z2 ¼ �2 þ "½z2 � �2� � "2�2:

As a consequence,

�0ð0Þ ¼ c
d

d"

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðF"Þ

p� �
"¼0

¼
�c

2

z

�

� �2
�1

� �
:

œ

4.4. ML risk estimators for Laplace distributions

We have seen that the effective risk measure of the Laplace

MLRE of VaR, ES, or any spectral risk measure is

�eff ðF Þ ¼ c�ðF Þ, F 2 D1,

where c¼ �(G ), G is the distribution with density

g(x)¼ e�jxj/2, and �(F )¼
R

RjxjdF(x).

Proposition 4.6: Let � be a positively homogeneous risk

measure. The sensitivity function at F2D1 of its Laplace

MLRE is

SðzÞ ¼ cðjzj � �ðF ÞÞ:

Proof: As usual, we have, for z2R, S(z)¼�0(0), where
�(")¼ c�(F"), F"¼ (1� ")Fþ "�z and c is defined above.

We have

�ð"Þ ¼ cð1� "Þ�ðF Þ þ c"jzj,

and we conclude that

�0ð0Þ ¼ cjzj � c�ðF Þ:

œ

This proposition shows that the sensitivity of the

Laplace MLRE at any F2D1 is not bounded, but linear

in z. Nonetheless, the sensitivity of the Gaussian MLRE

is quadratic at any F2D2, which indicates a greater

sensitivity to outliers in the data set.

4.5. Finite-sample effects

The sensitivity functions computed above are valid for
(asymptotically) large samples. In order to assess the

finite-sample relevance accuracy of risk estimator sensitiv-

ities, we compare them with the finite-sample sensitivity

SNðz;F Þ ¼
b� ðX1, . . . ,XN, zÞ �b� ðX1, . . . ,XNÞ

1=ðNþ 1Þ
:

Figure 3 compares the empirical sensitivities of historical,

Gaussian, and Laplace VaR and historical, Gaussian, and

Laplace ES with their theoretical (large sample) counter-
parts. We have used the same set of N¼ 1000 loss

scenarios as in section 1.1.

Table 1. Behavior of sensitivity functions for some risk
estimators.

Risk estimator Dependence in z of S(z)

Historical VaR Bounded
Gaussian ML for VaR Quadratic
Laplace ML for VaR Linear
Historical Expected Shortfall Linear
Gaussian ML for Expected Shortfall Quadratic
Laplace ML for Expected Shortfall Linear
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The asymptotic and empirical sensitivities coincide for
all risk estimators except for historical risk measurement

procedures. For the historical ES, the theoretical sensi-

tivity is very close to the empirical one. Nonetheless, we

note that the empirical sensitivity of the historical VaR

can be equal to 0 because it is strongly dependent on the

integer part of N�, where N is the number of scenarios

and � the quantile level. This dependency disappears
asymptotically for large samples.

The excellent agreement shown in these examples

illustrates that the expressions derived above for theoret-

ical sensitivity functions are useful for evaluating the

sensitivity of risk estimators for realistic sample sizes.

This is useful since theoretical sensitivity functions are

analytically computable, whereas empirical sensitivities

require perturbating the data sets and recomputing the

risk measures.

5. Discussion

5.1. Summary of main results

Let us now summarize the contributions and main

conclusions of this study.
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Figure 3. Empirical versus theoretical sensitivity functions of risk estimators for �¼ 1% at a 1 day horizon. Historical VaR (upper
left), historical ES (upper right), Gaussian VaR (left), Gaussian ES (right), Laplace VaR (lower left), Laplace ES (lower right).
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First, we have argued that when the estimation step is
explicitly taken into account in a risk measurement
procedure, issues like robustness and sensitivity to the
data set are important and need to be accounted for with
at least the same attention as the coherence properties set
forth by Artzner et al. (1999). Indeed, we do think that it
is crucial for regulators and end-users to understand the
robustness and sensitivity properties of the risk estimators
they use or design to assess the capital requirement, or
manage their portfolio. Indeed, an unstable/non-robust
risk estimator, be it related to a coherent measure of risk,
is of little use in practice.

Second, we have shown that the choice of the estima-
tion method matters when discussing the robustness of
risk measurement procedures: our examples show that
different estimation methods coupled with the same risk
measure lead to very different properties in terms of
robustness and sensitivity.

Historical VaR is a qualitatively robust estimation
procedure, whereas the proposed examples of coherent
(distribution-based) risk measures do not pass the test of
qualitative robustness and show high sensitivity to ‘out-
liers’. This explains perhaps why many practitioners have
been reluctant to adopt ‘coherent’ risk measures. Also,
most parametric estimation procedures for VaR and ES
lead to non-robust estimators. On the other hand,
weighted averages of historical VaR such as

1

�2 � �1

Z �2

�1

VaRuðF Þdu,

with 14�24�140, have robust empirical estimators.

5.2. Re-examining subadditivity

The conflict we have noted between robustness of a risk
measurement procedure and the subadditivity of the risk
measure shows that one cannot achieve robust estimation
in this framework while preserving subadditivity. While a
strict adherence to the coherence axioms of Artzner et al.
(1999) would lead to choosing subadditivity over robust-
ness, several recent studies (Danielsson et al. 2005, Heyde
et al. 2007, Ibragimov and Walden 2007, Dhaene et al.
2008) have provided reasons for not doing so.

Danielsson et al. (2005) explore the potential for
violations of VaR subadditivity and report that, for
most practical applications, VaR is sub-additive. They
conclude that, in practical situations, there is no reason to
choose a more complicated risk measure than VaR, solely
for reasons of subadditivity. Arguing in a different
direction, Ibragimov and Walden (2007) show that, for
very ‘heavy-tailed’ risks defined in a very general sense,
diversification does not necessarily decrease tail risk but
actually can increase it, in which case requiring sub-
additivity would in fact be unnatural. Finally, Finally,
Heyde et al. (2007) argue against subadditivity from an
axiomatic viewpoint and propose to replace it by a weaker
property of co-monotonic subadditivity. All these objec-
tions to the subadditivity axiom deserve serious consid-
eration and further support the choice of robust risk

measurement procedures over non-robust procedures for
the sole reason of saving subadditivity.

5.3. Beyond distribution-based risk measures

While the ‘axiomatic’ approach to risk measurement in
principle embodies a much wider class of risk measures
than distribution-based (or ‘law-invariant’) risk measures,
research has almost exclusively focused on this rather
restrictive class of risk measures. Our result, that coher-
ence and robustness cannot coexist within this class, can
also be seen as an argument for going beyond
distribution-based risk measures. This also makes sense
in the context of the ongoing discussion on systemic risk:
evaluating exposure to systemic risk requires considering
the joint distribution of a portfolio’s losses with other,
external, risk factors, not just the marginal distribution
of its losses. In fact, risk measures that are not
distribution-based are routinely used in practice: the
Standard Portfolio Analysis of Risk (SPAN) margin
system, and cited as the original motivation by Artzner
et al. (1999), is a well-known example of such a method
used by many clearinghouses and exchanges.

We hope to have convinced the reader that there is
more to risk measurement than the choice of a ‘risk
measure’: statistical robustness, and not only ‘coherence’,
should be a concern for regulators and end-users when
choosing or designing risk measurement procedures.
The design of robust risk estimation procedures requires
the explicit inclusion of the statistical estimation step
in the analysis of the risk measurement procedure.
We hope this work will stimulate further discussion on
these important issues.

Acknowledgements
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Föllmer, H. and Schied, A., Stochastic Finance: An Introduction
in Discrete Time, 2004 (Walter de Gruyter: Berlin).

Frittelli, M. and Rosazza Gianin, E., Putting order in risk
measures. J. Bank. Finance, 2002, 26, 1473–1486.

Gourieroux, C., Laurent, J. and Scaillet, O., Sensitivity analysis
of values at risk. J. Empir. Finance, 2000, 7, 225–245.

Gourieroux, C. and Liu, W., Sensitivity analysis of distortion
risk measures. Working Paper, 2006.

Hampel, F., Ronchetti, E., Rousseeuw, P. and Stahel, W.,
Robust Statistics: The Approach Based on Influence Functions,
1986 (Wiley: New York).

Heyde, C., Kou, S. and Peng, X., What is a good risk measure:
bridging the gaps between data, coherent risk measures,
and insurance risk measures. Preprint, Columbia University,
2007.

Huber, P., Robust Statistics, 1981 (Wiley: New York).
Ibragimov, R. and Walden, J., The limits of diversification when
losses may be large. J. Bank. Finance, 2007, 31, 2551–2569.

Kusuoka, S., On law invariant coherent risk measures.
Adv. Math. Econ., 2001, 3, 83–95.

Rockafellar, R. and Uryasev, S., Conditional Value-at-Risk for
general distributions. J. Bank. Finance, 2002, 26, 1443–1471.

Tasche, D., Expected shortfall and beyond. In Statistical Data
Analysis Based on the L1-Norm and Related Methods, edited
by Y. Dodge, pp. 109–123, 2002 (Birkhäuser: Boston, Basel,
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Appendix A: Proofs

A.1. Proof of proposition 3.2

‘1.) 2’. Assume that �jC is continuous at F and fix "40.
Since for all G2C

d ðLnðb� h,F Þ,Lnðb� h,G ÞÞ

� d ðLnðb� h,FÞ, ��ðF ÞÞ þ d ð��ðF Þ,Lnðb� h,G ÞÞ,

and b� h is consistent with � at F, it suffices to prove that
there exists �40 and n0� 1 such that, for all G2C,

d ðG,F Þ � �¼) d ð��ðF Þ,Lnðb� h,G ÞÞ �
"

2
, 8n � n0:

Note that Strassen’s Theorem (Huber 1981, theorem 3.7)
gives us the following sufficient condition to obtain the
desired result:

P j�ðF Þ��ðGemp
x Þj �

"

2

� �
� 1�

"

2
¼)dð��ðFÞ,Lnðb� h,G ÞÞ �

"

2
:

Then, by using that �jC is continuous at F, there exists
��4 0 such that, for each G2C that satisfies d ðF,G Þ � 2 ��,
we have d(��(F ), ��(G ))¼ j�(F )� �(G )j5"/2. As Demp
C,
we obtain that

Pðd ðF,G emp
x Þ � 2 ��Þ � P j�ðF Þ � �ðG emp

x Þj �
"

2

� �
:

Therefore, it suffices to show that Pðd ðF,G emp
x Þ � 2 ��Þ �

1� ð"=2Þ.
Now, using that Glivenko–Cantelli convergence is

uniform in G, we have for each "40 and �40 the
existence of n0� 1 such that, for all G2C,

Pðd ðG,G emp
x Þ � �Þ � 1�

"

2
, 8n � n0:

Therefore, the C-robustness follows from the triangular
inequality d ðF,G emp

x Þ � d ðF,G Þ þ d ðG,G emp
x Þ and by

taking � � ��.

‘2.) 1’. Conversely, assume that b� h is C-robust at F and
fix "40. Then there exists �40 and n0� 1 such that, for
all G2C,

d ðF,G Þ5 �) d ðLnðb� h,F Þ,Lnðb� h,G ÞÞ5
"

3
, 8n � n0:

As a consequence, from the triangular inequality

j�ðFÞ��ðG Þj ¼ dð��ðFÞ,��ðGÞÞ

� d ð��ðFÞ,Lnðb� h,FÞÞþdðLnðb�h,F Þ,Lnðb� h,G ÞÞ

þdðLnðb� h,G Þ,��ðG ÞÞ,

and the consistence of b� h with � at F and any G2C,
it follows that �jC is continuous at F.

A.2. Proof of theorem 3.10

We will show that the continuity problem of the ML scale
function �mle : D !R

þ of portfolios X can be reduced to
the continuity (on a properly defined space) issue of the
ML location function of portfolios Y¼ ln(X2). The
change of variable here is made to use the results of
Huber (1981) concerning the weak continuity of location
parameters. The distribution F can be seen as the
distribution of a portfolio X0 with �(X0)¼ 0 and
�(X0)¼ 1. Then, by setting Y0 ¼ lnðX2

0Þ, and denoting
by G the distribution of Y0 we have

Gð yÞ ¼ PðY0 � yÞ ¼ PðX2
0 � e yÞ ¼ F ðe y=2Þ � F ð�e y=2Þ,

gð yÞ ¼ G0ð yÞ ¼ e y=2f ðe y=2Þ:

Moreover, by introducing the function

’ð yÞ ¼ �
g0ð yÞ

gð yÞ
, D’¼

4
G :

Z
’ð yÞGðdyÞ51

	 

,

we can define, as in Huber (1981), the ML location
function �mle(H ) for any distribution H2Du as the
solution of the following implicit relationZ

’ð y� �ÞHðdyÞ ¼ 0: ðA1Þ

Now we consider the distribution FX2D of the random
variable X representing the P&L of a portfolio and
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assume that FX has density fX and that the solution toR
 (x/�)FX(dx)¼ 0 has a unique solution �¼ �mle(FX).

Denoting by FY the distribution of Y¼ ln(X2), it is easy to

check that FY2Du since, for y¼ ln(x2), we have

’ð yÞ ¼ �
g0ð yÞ

gð yÞ

¼ �

1
2 e
ð yÞ=2f ðe ð yÞ=2Þ þ 1

2 e
yf 0ðe ð yÞ=2Þ

e ð yÞ=2f ðe ð yÞ=2Þ

¼ �
1

2
1þ e ð yÞ=2

f 0ðe ð yÞ=2Þ

f ðe ð yÞ=2Þ

� �

¼ �
1

2
1þ x

f 0ðxÞ

f ðxÞ

� �
¼

1

2
 ðxÞ: ðA2Þ

Noticing that

FYðdyÞ ¼ fYðyÞdy¼ xfXðxÞdðlnðx
2ÞÞ¼ 2fXðxÞdx¼ 2FXðdxÞ,

we immediately obtain from equations (17), (A1) and

(A2) that �mle(FX)¼�
mle(FY) when Y¼ 2 ln(X ). We have

therefore shown that a scale function characterized by the
function  can also be interpreted as a location function

characterized by the function u. From equation (A2), we

see that, for all x2R, 2u(x)¼ [ex/2]. Therefore, as  is
assumed to be even and increasing on R

þ, it implies that u
is increasing on R. Moreover, as  takes values of both
signs it is also true for u. To conclude, we apply

theorem 2.6 of Huber (1981), which states that a location

function associated with u is weakly continuous at G if
and only if u is bounded and the location function

computed at G is unique.
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