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T
he availability of high-frequency data on transactions, quotes, and order flow in elec-
tronic order-driven markets has revolutionized data processing and statistical model-
ing techniques in finance and brought up new theoretical and computational 
challenges. Market dynamics at the transaction level cannot be characterized solely in 
terms the dynamics of a single price, and one must also take into account the interac-

tion between buy and sell orders of different types by modeling the order flow at the bid price, ask 
price, and possibly other levels of the limit order 
book. We outline the empirical characteristics of 
high-frequency financial time series and provide an 
overview of stochastic models for the continuous-
time dynamics of a limit order book, focusing in par-
ticular on models that describe the limit order book 
as a queuing system. We describe some applications 
of such models and point to some open problems.

ELECTRONIC ORDER-DRIVEN MARKETS
In recent years, automated trading and dealing have 
largely replaced floor-based trading in equity mar-
kets. Electronic Crossing Networks (ECNs) such as 
Archipelago, Instinet, Brut, and Tradebook providing 
order-driven trading systems have captured a large 
share of the market. In contrast to markets where a 
market maker or specialist centralizes buy and sell 
orders and provides liquidity by setting bid and ask 
quotes, these electronic platforms aggregate all out-
standing limit orders in a limit order book that is 
available to market participants, and market orders 

are executed against the best available prices, in a mechanical manner. As a result of the ECNs’ pop-
ularity, established exchanges such as the NYSE, Nasdaq, the Tokyo Stock Exchange, Toronto Stock 
Exchange, Vancouver Stock Exchange, Euronext (Paris, Amsterdam, Brussels), and the London 
Stock Exchange have fully or partially adopted electronic order-driven platforms. 
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At the same time, the fre-
quency of submission of orders 
has increased and the time to 
execution of market orders on 
these electronic markets has 
dropped from more than 25 ms 
in 2000 to less than 1 ms in 2010. As shown in Table 1, 
 thousands of orders are submitted in a 10-s interval, resulting 
in frequent updates in bid and ask quotes, up to 100,000 times 
a day, as well as frequent changes in transaction prices. 

As a result, the evolution of supply, demand, and price behavior 
in equity markets is being increasingly recorded: this data is avail-
able to market participants in real time and for researchers in the 
form of high-frequency databases. The analysis of such high-fre-
quency data constitutes a challenge, not the least because of their 
sheer volume and complexity. These data provide us with a 
detailed view of the complex dynamic process through which the 
market “digests” the inflow of supply and demand to generate the 
price [1], [2]. 

The large volume of data available, the presence of statistical 
regularities in the data, and the mechanical nature of execution of 
orders makes order-driven markets interesting candidates for sta-
tistical analysis and stochastic modeling. 

At a fundamental level, statistical analysis and modeling of 
high-frequency data can provide insight into the interplay 
between order flow, liquidity, and price dynamics [3]–[5] and 
might help bridge the gap between market microstructure 
theory [6]–[11], which has provided useful insights by focus-
ing on models of price formation mechanism in stylized equi-
librium settings, and “black box” stochastic models used in 
financial risk management, which represent the price as an 
exogenous random process. 

At the level of applications, models of high-frequency data pro-
vide a quantitative framework for market making [12] and optimal 
execution of trades [13]–[16]. Another obvious application is the 
development of statistical models in view of predicting short term 
behavior of market variables such as price, trading volume and 
order flow. 

The study of high-frequency market dynamics is also impor-
tant for risk management and regulation. Even though the hori-
zons traditionally considered by risk managers and regulators 
have been longer ones (typically, daily or longer), trading strate-
gies at different frequencies may interact in a complex manner, 
leading to ripples across time scales that propagate from high fre-
quency to low frequency and even leading to possible market dis-
ruptions, as shown by the Flash Crash of May 2010 [17], [18]. 

TRADES, QUOTES, AND ORDER FLOW
High-frequency data in finance involve time series of prices and 
quantities associated to these prices. However, when one looks at 
transaction-level frequencies, a security is not characterized by a 
single price: one must distinguish between transaction data, 
which record quantities that were actually traded and the prices at 
which they were traded, and quotes, which are proposals to buy or 
sell a given quantity of an asset at a given price. 

TRANSACTION DATA
Transaction data record trades 
that occur on an exchange, each 
record being associated with a 
time stamp, a price, and quantity 
(trade volume, in number of 

shares). Transaction data present several particularities that differ-
entiate them from financial time series sampled, say, at daily fre-
quency [2], [19]. 

Price changes are discrete: they are multiples of the minimal 
price change d—the “tick”—and more than often equal to one, 
two, or a few ticks. These price changes are not independent: the 
autocorrelation function of transaction price returns is significant-
ly negative at the first lag and then it rapidly decreases to zero 
[20]. This is a typical microstructure effect that disappears when 
one considers returns at longer time scales. 

Trades occur at irregular intervals: the durations between 
successive trades reflect the intensity of trading activity [19]: 
they are random and endogenous i.e., linked to the behavior 
of the price and possibly to previous trading history. With 
respect to traditional time-series models, this poses the addi-
tional problem of modeling the durations. These durations 
are neither independent—they show significant autocorrela-
tion—nor exponentially distributed: Figure 1 displays a 

[TABLE 1] AVERAGE NUMBER OF ORDERS IN 10 S 
AND NUMBER OF PRICE CHANGES (26 JUNE 2008).

AVERAGE NUMBER 
OF ORDERS IN 10 S

PRICE CHANGES 
IN ONE DAY

CITIGROUP 4,469 12,499 

GENERAL ELECTRIC 2,356   7,862 

GENERAL MOTORS 1,275   9,016 
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[FIG1] Quantiles of interevent durations compared with 
quantiles of an exponential distribution with the same mean 
(Citigroup, June 2008). The dotted line represents the quantiles 
of an exponential distribution fitted to the observed durations, 
which are found to be quite different from the empirical 
quantiles. 

THE STUDY OF HIGH-FREQUENCY 
MARKET DYNAMICS IS IMPORTANT

 FOR RISK MANAGEMENT 
AND REGULATION.
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 quantile-quantile plot compar-
ing the distribution of duration 
for Citigroup to an exponential 
distribution. The irregularity of 
observations makes it much 
easier to work with continuous-
time model, as opposed to time-series models based on a fixed 
time step. The sizes of these transactions (trading volume) 
are both heterogeneous and strongly autocorrelated [21]. 

Another issue with high-frequency data is the presence of 
seasonality effects. Trading activity is far from uniform during 
the trading day and exhibits a U-shaped pattern: activity is 
typically highest at the market open and close, and lowest 
around lunch time. Quantities related to price volatility and 
trading volume also follow strong intraday seasonality pat-
terns. As a result, intraday data cannot be treated as station-
ary and should be first deseasonalized before further analysis. 
This is done in practice by averaging across many days to 
obtain a seasonality profile or by using Fourier-based filtering 
methods. Statistical models of transaction data need to jointly 
model the durations and the price changes. It is thus natural 
to model such data as a marked point process [22]. One 
approach is to consider a stochastic model for durations and, 
conditional on the duration, model the price changes using a 
classical autoregressive moving average (ARMA) or general-
ized autoregressive conditional heteroscedastic (GARCH) 

model [23], [24]. The duration 
ti between transactions i2 1 
and i may be represented as 

 ti5ci Pi ,

where 1Pi 2 i$1 is a sequence of independent positive random vari-
ables with common distribution and E 3Pi 45 1 and the  conditional 
duration ci5 E 3ti|ci2j, ti2j, j $ 1 4 is modeled as a function of 
past history of the process 

 ci5G 1ci21, ci22,c, . .  ; ti21, ti22, c , . . 2 .
Engle and Russell’s autoregressive conditional duration (ACD) 
model [23] proposes an ARMA 1p, q 2  representation for G 

 ci5 a01 a
p

i51
akci2k1 a

q

i51
bqtj2k,

where 1a0, c, ap 2  and 1b1, c , bq 2  are positive constants. The 
ACD-GARCH model of Ghysels and Jasiak [24] combines this 
model with a GARCH model for the returns. Engle [21] proposes a 
GARCH-type model with random durations where the volatility of 
a price change may depend on the previous durations. Variants 
and extensions are discussed in [25] and [19]. Such models, like 
ARMA or GARCH models defined on fixed time intervals, have eas-
ily computable likelihood functions so maximum likelihood esti-
mation may be done numerically.

QUOTES AND ORDER FLOW
Market participants can post two types of buy/sell orders. A limit 
order is an order to trade a certain amount of a security at a given 
price. Limit orders are posted to an electronic trading system and 
the state of outstanding limit orders posted by market participants 
can be summarized by stating the quantities posted at each price 
level: this is known as the limit order book. An example of a limit 
order book is shown in Figure 2. The lowest price for which there 
is an outstanding limit sell order is called the ask price and the 
highest buy price is called the bid price. 

A market order is an order to buy/sell a certain quantity of the 
asset at the best available price in the limit order book. When a 
market order arrives, it is matched with the best available price in 
the limit order book and a trade occurs. The quantities available at 
the bid/ask in the limit order book are decreased by x when a mar-
ket order of size x is executed. Figure 3 shows the evolution of a 
limit order book when a market order is executed. 

A limit order sits in the order book until it is either execut-
ed against a market order or it is canceled. A limit order may 
be executed very quickly if it corresponds to a price near the 
bid and the ask but may take a long time if the market price 
moves away from the requested price or if the requested price 
is too far from the bid/ask. Alternatively, a limit order can be 
canceled at any time. On most electronic exchanges, most 
limit orders are canceled shortly after being posted: for many 
liquid stocks on the NYSE and NASDAQ, up to 80% of limit 
orders are canceled within less than a second of posting. 
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[FIG2] A limit buy order: Buy two at 69,200.
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[FIG3] A market sell order of ten.
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Quote data contain the evolu-
tion of the bid and ask prices and 
the quantities (number of shares) 
quoted at these prices. These 
quantities vary every time a limit 
order is posted, executed against 
a market order or canceled. 
Figure 4 shows the intraday evolution of the ask price for 
Citigroup on 26 June 2008. 

Trades and quotes data are available for a wide range of 
stock exchanges and markets worldwide. The most well-known 
trade and quote database is the Trade and Quote (TAQ) data-
base, maintained by New York Stock Exchange (NYSE) since 
1993. Trade and quote data allow to reconstruct the sequence 
of limit and market orders and infer whether the transaction 
was buyer or seller initiated. The idea is to compare the trade 
price with the bid and ask price of the prevailing quote, which 
is the most recent past quote. This is the basis of the Lee and 
Ready algorithm [26] for assigning signs to trades (see also [27] 
for a discussion). 

Most stocks are simultaneously quoted on many exchanges 
and, at each point in time, there is a reference National Best Bid 
and Offer (NBBO) quote but the uniqueness of the NBBO should 
not hide the multiplicity of order books, with different depths and 
bid-ask spreads, which is the reality of this market. 

Quote data are sometimes known as the “level-1 order book,” 
since they correspond to the first (i.e., best price) level of the order 
book. More generally high-frequency time series of order book 
data have become available in the recent years: level-2 order book 
data give the prices and quantities for the first five nonempty lev-
els of the book on each side, while complete order book data corre-
spond to quantities at all price levels [28]. Order books for many 
stocks, including liquid ones, have typically less than five active 
queues on each side of the order book, the rest being empty or 
sparsely filled [1]. 

DYNAMICS OF LIMIT ORDER BOOKS
In a limit order market, outstanding limit orders at any given time 
are represented by the limit order book, which summarizes the 
state of supply and demand. Not surprisingly, empirical studies 
[28], [29] show that the state of the order book contains informa-
tion on short-term price movements, so it is of interest to provide 
forecasts of various quantities conditional on the state of the order 
book. Order books presents a rich palette of statistical features [1], 
[5], [30], [31], [4] that are challenging to incorporate in a statisti-
cal model, partly because of the high dimensionality of the order 
book and the complexity of its evolution. Providing analytically 
tractable models that enable to compute and/or reproduce condi-
tional quantities that are relevant for trading and intraday risk 
management has proven to be challenging, given the complex 
relation between order book dynamics and price behavior. 

THE LIMIT ORDER BOOK AS A QUEUEING SYSTEM
The state of the order book is modified by order book events: limit 
orders (at the bid or ask), market orders and cancellations [28], 

[27], [4]. A limit buy (respectively 
sell) order of size x increases the 
size of the bid (respectively ask) 
queue by x. 

Market orders are executed 
against limit orders at the best 
available price: a market order 

decreases of size x the corresponding queue size by x. Limit 
orders placed at the best available price are automatically execut-
ed against market orders according to a priority rule. In many 
electronic equity markets, priority is based on the time of arrival 
(first come, first served). However, other priority rules exist: size-
based priority grants priority to larger orders, while pro-rata 
matching, used in some fixed income futures markets such as 
EUREX, allocates shares to limit orders proportionally to their 
size [32]. Cancellation of x orders in a given queue reduces the 
queue size by x. 

It is thus natural to represent a limit order book as a multi-
class queueing system [28], [4] i.e., a system of (interacting) 
queues of buy and sell limit orders, executed against market 
orders (“the server”) or cancelled before execution. Point pro-
cesses and queueing analogies have been used early on for 
modeling order flows in securities markets [33] and were con-
sidered by Smith et al. [4] for limit order book modeling. 
Queueing models allow for analytical computation of many 
quantities of interest [28], [34], [35]. 

A queueing model of limit order book dynamics consists in 
specifying the arrival rates of different types of order book events 
(limit buy, limit sell, market buy, market sell, buy/sell cancel) and 
the rules of execution of these orders. The evolution of the order 
book is then defined by the order flow. In such models, the dynam-
ics of durations, prices, and bid-ask spreads are endogenous. The 
arrival rates may be taken constant—leading to a Poisson order 
flow [28]—or be stochastic processes affected by the state of the 
order book and by recent order flow [35]. 

Cont et al. [28] study a Markovian queueing model in which 
arrivals of market orders and limit orders at each price level are 
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[FIG4] Intraday evolution of the ask price: Citigroup, 26 June 
2008. Horizontal axis: number of events.
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independent Poisson processes 
and compute analytically, using 
simple matrix computations and 
Laplace transform methods, the 
distribution of time to fill (execution time), the probability of 
“making the spread” and the conditional distribution of price 
moves given the state of the order book [28]. Though the 
Poisson assumption is not very realistic—durations are neither 
exponentially distributed nor independent—the model is shown 
to capture effectively the short-term dynamics of a limit order 
book. 

In reality, the order flow is clustered in time: as shown in 
Figure 5, we observe periods with a lot of market buy orders and 
periods with a lot of market sell orders [35], [36]. This is partly 
due to the fact that many observed orders are in fact 
 components of a larger “parent” order that is executed in small 
blocks to minimize market impact [13]. This results in a 

 significant autocorrelation in 
durations, as well as a positive 
cross-correlation of arrival rates 
across event types (market buy, 

limit sell). These features, which are not captured in models 
based on Poisson processes, may be adequately represented by a 
multidimensional self-exciting point process [36], [35]: in such 
models, the arrival rate li 1t 2  of an order of type i is represented 
as a stochastic process whose value depends on the recent histo-
ry of the order flow: each new order increases the rate of arrival 
for subsequent orders of the same type (self-exciting property) 
and may also affect the rate of arrival of other order types 
(mutually exciting property) 

 li 1t 2 5 ui1 a
J

j51

dij a
Tn

j#t

e2ki 1t2Tn
j2,

where T1
j, c, Tn

j are the occurrence times of events of type j. 
Here dij measures the impact of events of type j on the rate of 
arrival of subsequent events of type i: as each event of type j 
occurs, li increases by dij. In between events, li 1t 2  decays 
exponentially at rate ki. This baseline model, known as the 
Hawkes process, does not account for the fact that order flow 
reacts to changes in the bid-ask spread. Andersen et al. [35] 
enhance this basic model by incorporating dependence of 
parameters d, k on the bid-ask spread. Maximum likelihood 
estimation of this model on TAQ data [35] shows evidence of 
self-exciting and mutually exciting features in order flow: the 
coefficients dij are all significantly different from zero and pos-
itive, with dii . dij for j 2 i and depend significantly on the 
bid-ask spread. 

Like models based on Poisson order flow, these models allow 
for analytical computations of many quantities, without recourse 
to simulation. The availability of such analytical formulae is a key 
feature when using such models in real-time applications. 

QUEUEING MODELS FOR LEVEL-1 ORDER BOOKS
Empirical studies of limit order markets suggest that the major 
component of the order flow occurs at the (best) bid and ask price 
levels (see, e.g., [37]). Furthermore, studies on the price impact of 
order book events show that the net effect of orders on the bid and 
ask queue sizes is the main factor driving price variations [27]. 
These observations motivate a reduced-form modeling approach 
in which, instead of modeling the order queues at all price levels, 
one focuses on queue sizes at the best bid and ask [34]. In this 
approach one focuses on the dynamics of the state variables 1St

b, St
a, qt

b, qt
a 2  where 

 ■ the bid price St
b and the ask price St

a 
 ■ the size of the bid queue qt

b representing the outstanding 
limit buy orders at the bid 

 ■ the size of the ask queue qt
a representing the outstanding 

limit sell orders at the ask.
Figure 6 summarizes this representation. In principle, the 
evolution of the size of the queues at the best quotes depends 
on the deeper levels of the order book: indeed, once the bid 
(respectively the ask) queue is depleted, the price will move to 
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[FIG5] Changes in the size of the ask queue: each data point 
represents one order or cancellation. Positive values represent 
sizes of limit orders and negative values represent market orders 
or cancellations. Data from Citigroup, 26 June 2008. 
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the queue at the next level, which is queue at the next level 
below (respectively above) the current bid (ask). The new 
queue size thus corresponds to what was previously the num-
ber of orders sitting at the second-best price. Instead of keep-
ing track of these queues (and the corresponding order flow) 
at all price levels (as in [28] and [4]), Cont and Larrard [34] 
propose a model in which the bid/ask queue sizes 1qt

b, qt
a 2  are 

renewed at each price change, i.e., every time one of the 
queues is depleted. More precisely, 

 ■ if the ask queue is depleted at t then 1qt
b, qt

a 2  is a variable 
with distribution f, where f 1x, y 2  represents the probability 
of observing 1qt

b, qt
a 2 5 1x, y 2  right after a price increase. 

 ■ if the bid queue is depleted at t then 1qt
b, qt

a 2  is a variable 
with distribution f

|
, where f

|1x, y 2  represents the probabil-
ity of observing 1qt

b, qt
a 2 5 1x, y 2  right after a price 

decrease.
The distributions f, f

|
 may be estimated from empirical data: 

an example is shown in Figure 7. They summarize the interac-
tion of the queues at the best bid/ask levels with the rest of the 
order book, viewed here as a reservoir of limit orders. Thus 1qt

b, qt
a 2  is a random process in the positive orthant, renewed 

every time it hits the axes. This approach considerably simpli-
fies the model, enhances tractability, and makes it easier to 
estimate parameters. 

Between two hitting times, one can specify various dynamics 
for the queues. Cont and Larrard [34] consider the simplest speci-
fication, namely a Markovian model with Poisson arrivals of 
orders. This model allows to obtain analytical expressions for vari-
ous quantities of interest such as the distribution of the duration 
between price changes, the distribution and autocorrelation of 
price changes, and the probability of an upward move in the price, 
conditional on the state of the order book. Interestingly, these 
results provide reasonable fits to empirical data [34], showing that 
such low-dimensional models may be suitable for many applica-
tions. Figure 8 shows an example of such a result, comparing the-
oretical transition probabilities for the price computed in this 
reduced-form model with empirical transition probabilities esti-
mated from high-frequency data. 

HEAVY-TRAFFIC LIMITS 
AND DIFFUSION APPROXIMATIONS
Analytically tractable models of order book dynamics may contain 
assumptions that are not statistically realistic: durations between 
orders are neither independent nor exponentially distributed, and 
various order types exhibit strong dependence [35]. In addition, 
the order flow exhibits seasonality as well as dependence with 
respect to price and spread behavior [1]. 

While a model incorporating all these features may be too 
complex to study analytically, two remarks show that the situation 
is not as hopeless as it may seem at first glance. 

First, as shown in Table 2, most applications involve the 
behavior of prices over time scales an order of magnitude larg-
er than the typical interevent duration: for example, in opti-
mal trade execution the benchmark is the volume weighted 
average price (VWAP) computed over a day or an hour: over 

such time scales much of the microstructural details of the 
market are averaged out. Second, as noted in Table 1, in liquid 
equity markets, the number of events affecting the state of the 
order book over such time scales is quite large; of the order of 
hundreds or thousands. The typical duration tL5 1/l (respec-
tively tM5 1/m) between limit orders (respectively, market 
orders and cancelations) is typically 0.0012 0.01 V 1 (in sec-
onds). These observations show that it is relevant to consider 
asymptotic methods in which the rate of arrival of orders is 
large, similar to those used in the study of heavy-traffic limits 
in queueing theory [38]. In this limit, the possibly complex 

[TABLE 2] A HIERARCHY OF TIME SCALES.

REGIME TIME SCALE ISSUES 
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| 102320.1 MICROSTRUCTURE, 
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0.02

0.015

0.01

0.005

0
0

50
0

1,
00

0

1,
50

0

2,
00

0

2,
50

0 0
1,000

2,000
3,000

0
50

0
00

00
00 0 0

1,000
2,00

[FIG7] Empirical (joint) distribution of bid and ask queue sizes 
after a price move (Citigroup, June 2008) [34]. Unit: blocks of 
100 shares.
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discrete dynamics of the queue-
ing system is approximated by a 
simpler system with a continu-
ous state space, which can be 
either described by a system of 
ordinary differential equations (in the “fluid limit,” where ran-
dom fluctuations in queue size vanish) or a system of stochas-
tic differential equations (in the “diffusion limit,” where 
random fluctuations dominate). Intuitively, the fluid limit cor-
responds to the regime of the law of large numbers, where 
random fluctuations average out and the limit is described by 
average queue size, whereas the diffusion limit corresponds to 
the regime of the central limit theorem, where fluctuations in 
queue size are asymptotically Gaussian. The relevance of each 
of these asymptotic regimes is, of course, not a matter of taste 
but an empirical question that depends on the behavior of 
order flow in the system. 

As argued in [39], for most liquid stocks, while the rate of 
arrival of market orders and limit orders is large, the imbalance 
between limit orders, which increase queue size, and market 
orders and cancels, which decrease queue size, is an order of mag-
nitude smaller: over, say, a 30-min interval, one observes an imbal-
ance ranging from 1 to 5% of order flow. In other words, over a 
time scale t1 W tL, tM (say, 1 min) a  large number N|lt1 of 
events occur, but the bid/ask imbalance accumulating over the 
same interval is of order "N V N i.e., 1l2m 2  is small, of the 
order 1/"N. This corresponds to a situation where limit orders 
accumulate and disappear roughly at the same rate. In this 
regime, the queues follow a diffusive behavior and it is relevant to 
consider the diffusion limit of the limit order book. When the 
sequences of order sizes at the bid and the ask 1Vi

a, Vi
b, i $ 1 2  and 

interevent durations 1ti
a, ti

b, i $ 1 2  are weakly dependent covari-
ance-stationary sequences, the rescaled order book process con-
verges weakly [39] 

 aqa 1nt 2
"n

, 
qb 1nt 2
"n

b
t^0

1
d   1Qt 2 t$0

to a Markov process 1Qt 2 t$0 diffusing in the quarter plane 

 5 1x, y 2 ,  x $ 0, y $ 06,
which is “renewed” every time it hits one of the axes. In the case of 
a balanced order book where the arrival rate of limit orders 
matches on average their depletion rate by market orders and can-
cels and E 3Va

i 45 E 3Vb
i 45 0, the process Qt 

 ■ behaves like a planar Brownian motion with drift b and 
covariance matrix 

 a 
la va

2 rva vb"lalb

rva vb"lalb lbvb
2 b   (1)

on the interior of the orthant 5 1x, y 2 ,  x . 0, y . 06 
 ■ is reinitialized according to F each time it hits the x-axis 
 ■ is reinitialized according to F

|
 each time it hits the y-axis.

Qt is an example of “regulated Brownian motion” [40], a notion 
introduced in the context of heavy-traffic limits of multiclass 

queueing systems. In this case, Q 
is in fact a process with jumps: it 
jumps into the interior of the 
orthant every time it hits the axes. 
Here d is the tick size, 

 ■ 1/la5 limnS` 1t1
a1c1tn

a 2 /n is the average duration 
between events at the ask 

 ■ va
25 E 31V1

a 2 2 41 2g`
i52 Cov 1V1

a, Vi
a 2  represents the vari-

ance of event sizes at the ask 
 ■ 1/lb5 limnS` 1t1

b1c1tn
b 2 /n is the average duration 

between events at the bid 
 ■ vb

25 E 31V1
b 2 241 2g`

i52 Cov 1V1
b, Vi

b 2  represents the vari-
ance of event sizes at the ask 

 ■ F (respectively F
|

) is the (rescaled) distribution of 1qa, qb 2  
after a price increase (respectively decrease) 

 ■ r5 1cov 3V1
aV1

b41 2g`
i51 1cov 3V1  

a Vi
b41cov 3V1

bVi 
a4 22 / 1va vb 2  

measures the correlation between order sizes at the bid and 
at the ask. If order sizes at the bid and ask are symmetric and 
uncorrelated then r5 0. Empirically one finds that r , 0 for 
equity order books [39].

This diffusion approximation is analytically tractable and allows to 
compute analytically [39] many quantities such as the duration 
until the next price change, the probability of an increase in the 
price, and the distribution of the time to execution conditionally 
on the state of the order book. For example, in the symmetric case 
la5lb, va5 vb, the probability pup 1x, y2  that the next price 
move is an increase, given a queue of x shares on the bid side and 
y shares on the ask side, has a simple expression [39] 

 pup 1x, y 2 5 1
2
2

arctanaÅ11r

12r
 
 y2 x

y1 x
b

2 arctanaÅ11r

12r
b

, (2)

which only depends on the size x of the bid queue, the size y of 
the ask queue, and the correlation r between event sizes at the bid 
and the ask. 

Beyond their computational aspect, these analytical results 
shed light on the relation between order flow and price 
dynamics. A nice application is given by Avellaneda, Reed, and 
Stoikov [41]: using formula (2) in the case r521, they invert 
the effective size 1x, y 2  of the queues from the empirical tran-
sition probabilities of the price and compare it to the visible 
queue size: the difference, which they call hidden liquidity, is 
shown to account for a significant portion of market depth for 
some U.S. stocks. 

PRICE IMPACT MODELING
A particularly important issue for applications is the impact of 
orders on prices: the optimal liquidation of a large block of shares, 
given a fixed time horizon, crucially involves assumptions on price 
impact (see [13]–[16]). Of course, any model for the dynamics of 
the (full) order book implies a model of price impact. However, 
even in simple models for order book dynamics, the price impact 
may be difficult to characterize. Hence, the typical approach is to 

A PARTICULARLY IMPORTANT ISSUE 
FOR APPLICATIONS IS THE IMPACT OF 

ORDERS ON PRICES.
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investigate the relation between 
price changes and order flow 
directly using high-frequency 
data. 

Various models for price 
impact have been proposed in the 
literature but there is little agree-
ment on how to model it: price 
impact has been described by vari-
ous authors as linear, nonlinear, square root, temporary, instanta-
neous, permanent, or transient. The only consensus seems to be 
the intuitive notion that imbalance between supply and demand 
moves prices. 

The empirical literature on price impact has primarily 
focused on trades. Starting with Hasbrouck [42], empirical stud-
ies on public data [42]–[48] have investigated the relation 
between the direction and sizes of trades and price changes and 
typically conclude that the price impact of trades is an increas-
ing, concave (“square root”) function of their size. 

Studies based on proprietary data [49]–[51] are able to 
measure impact of “parent orders” gradually executed over 
time and give a different picture. Using large-cap U.S. equity 
orders executed by Citigroup Equity Trading, Almgren et al. 
[50] find evidence for a nonlinear dependence of temporary 
price impact DS as function of trade size V, of the form 
DS|V 3/5 across the range of trade sizes considered, but reject 
the “square root” law. Obizhaeva [51] studies the short run 
price-volume relation using a proprietary data set of portfolio 
transitions using a methodology that corrects for the endoge-
neity of trading decisions and finds that, in the short run, pur-
chases of stocks induce permanent price increases, the 
magnitude of which is proportional to the size of the trade. 
Moreover, if volume is expressed as a percentage of average 
daily volume and returns are expressed as a percentage of daily 
volatility, the proportionality constant is relatively stable 
across stocks. 

This focus on trades leaves out the information in quotes, 
which provide a more detailed picture of price formation [52], 
[53], [27]. In fact, knowledge of the limit order book allows to esti-
mate the short-term price impact of incoming orders. This can be 
understood by considering the following example of an order book 
with constant number of shares D per level (see Figure 9). If, dur-
ing a short time interval 3t, t1D 4, the volume of incoming limit 
orders (respectively market orders and cancellations) at the bid are 
L (respectively M, C) shares, then the net change in the number 
of limit orders at the bid is L2M2 C. If the depth of the order 
book is D shares (on average) at each level then the change in the 
bid price will be 

 S 1t1D 22S 1t 2 5d cL2M2C
D

d , (3)

where d is the tick size and 3 # 4 denotes the integer part. This exam-
ple, illustrated in Figure 9, shows that the change in the bid 
(respectively ask) price is determined by the order flow imbalance 
L2M2 C at the bid (respectively the ask), defined as the sum of 

limit order minus the market 
orders and cancellations during 
the interval 3t, t1D 4 [27] 

 O F I 1t, t1D 2 5 L2M2 C.

 (4)

Motivated by this example, Cont, 
Kukanov, and Stoikov [27] inves-

tigate a model in which high-frequency price changes are driv-
en by order flow imbalance 

 
S 1t1D 2 2 S 1t 2

d
5 c

O F I 1t, t1D 2
D 1t2 1 P 1t 2 ,  (5)

where d is the tick size, P 1t 2  is a (white) noise term, and D 1t 2  is 
a measure of order book depth (number of limit orders at the 
bid/ask). Empirical analysis of 1 s and 10 s midprice changes 
using the TAQ database for U.S. stocks show empirical evidence 
for the linear price impact model [27]: c is estimated to be typi-
cally between 0.1 and 1. 

The linear model (5) is quite different from models of price 
impact that consider only the size of trades [44], [42], [46]–[48], 
[54]. Instead of looking at price impact of trades as a (nonlinear) 
function of trade size, it shows that all order book events (includ-
ing trades) have a linear price impact, equal to c/D 1t 2  on aver-
age, and this impact can be summarized by aggregating all 
events into a single variable: the order flow imbalance. This rep-
resentation also implies that price impact has strong intraday 
seasonality, which follows the seasonality patterns in order book 
depth; this is indeed shown to be the case empirically [27]. 

CONNECTING VOLATILITY ACROSS TIME SCALES
While most econometric models of price volatility were initially 
developed with a focus on daily returns, with the advent of intra-
day and high-frequency trading there is an increasing need for 
developing realistic statistical models for intraday volatility pre-
diction and risk management. High-frequency data are also of 
interest for the estimation of volatility at daily level: as shown by 
Andersen and Bollerslev [55]–[57], realized variance computed 
from high-frequency data yields a better estimator of daily volatil-
ity than estimates computed from daily returns. 

One approach is to combine time-series models, such as 
GARCH models, developed for daily returns, with a model for 

D
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 D

 =
 5

Bid Side Ask Side

Market Buy
Orders, Mb = 15

Tick Size δ Ask Price Change = 3 Ticks
Midprice Change ΔP = Mb/(2D) = 1.5 Ticks

Price

[FIG9] Price impact of a market order.
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durations between trades, such 
as the ACD model [23]: this 
allows to incorporate the infor-
mation on variable rates of activ-
ity, peaks in trading activity 
being represented by shorter 
durations [21], [24]. This approach has been mostly applied to 
transaction data but a similar approach may also be considered 
for quotes [52]. 

Another approach for establishing a link between volatility and 
order flow is to start from a model for order book dynamics and 
compute the diffusion limit of the price process that describes the 
diffusive behavior of the price at longer time scales. This idea is 
implemented in [34] and [39] by proving a functional central limit 
theorem for the order book models described above. This result 
allows in particular to compute the variance of price changes over 
a time scale T W t0 much larger than the typical interevent dura-
tion. For example, in a Markovian model for a symmetric Level 1 
order book, Cont and Larrard [34] derive the following relation 
between the standard deviation s of price increments 
S 1t1 T 2 2 S 1t 2  and the statistics of order flow: 

 s5
v d

D 1F 2ÅplT
t0

5 vdl
"pT
D 1F 2 ,  (6)

where l5 1/t0 is the order flow in shares per unit time, F is the 
distribution of queue sizes after a price change, and 
D 1F 2 5"ex y dF 1x, y 2  is a measure of order book depth: it is 
the geometric mean of the queue size at the bid and the ask after a 
price change (and p is the familiar ratio of a circle’s perimeter to 
its diameter). In particular, this relation suggests that the high-fre-
quency properties of order flow contribute to price volatility main-
ly through l and D 1F 2 : for stocks that trade at the same 
frequency, volatility increases with the ratio l/D 1F 2 . This predic-
tion is empirically verified for major U.S. stocks [34]. Similar rela-
tions between volatility and order flow statistics may be obtained 
in more general settings with non-Markovian and asymmetric 
order flows [58]. 

PERSPECTIVES AND CHALLENGES
Existing studies have only scratched the surface of high-frequency 
financial data: much remains to be done towards a better analysis 
and understanding of intraday dynamics of financial markets and 
the development of operational models. 

These studies have mostly focused on equity markets and, to a 
lesser extent, futures markets and foreign exchange markets. 
Further studies are necessary on other markets, in particular, 
fixed-income markets and markets for listed derivatives, which 
have their own features. 

Also, almost all existing models focus on single-asset markets, 
whereas, in practice, most applications—in trading, risk manage-
ment, or regulation—involve multiple assets and portfolios. 
Extending univariate models to a multidimensional setting may 
not be straightforward: for example, in models where durations 
are random, keeping track of synchronicity across different assets 

is not trivial to implement. For 
this reason, whereas single-asset 
models go to a great length to 
model randomness in durations, 
multiasset modeling has mostly 
focused on modeling of fixed-

interval returns, the most well-known being Hasbrouck’s vector 
autoregressive [2] model. Yet, the connection between order flows 
across different assets is particularly relevant when considering 
indexes, futures, and options, which cannot be considered in isola-
tion and in which supply and demand are driven by events occur-
ring in another market—the market for the components of the 
index or the underlying asset of the derivative. Such multiasset 
limit order book models are very relevant for applications and 
their development represents a challenge. 

More remains to be done to bridge the gap between micro-
structure models—which hinge on various behavioral assump-
tions about market participants’ strategies—and stochastic 
models, which are more operational and data driven. The theoret-
ical input from microstructure models may be used to design 
new stochastic models whose ingredients will have a better eco-
nomic interpretation. The study of heavy-traffic limits and diffu-
sion limits of discrete order book models seems to be a promising 
direction of research. This approach restores analytical tractabili-
ty into the models and allows to connect microstructural features 
to statistical properties of prices and order flow, which are observ-
able and may be used in the empirical validation of models. 

We have focused in this survey on stochastic models and relat-
ed statistical techniques for high-frequency data. Other tech-
niques, though less present in the research literature (machine 
learning methods, wavelet-based methods, nonparametric pattern 
recognition methods, large-scale data mining techniques, and 
methods from cryptography) have been extensively applied by 
practitioners for prediction and pattern detection in high-fre-
quency data. These methods have contributed in some cases to 
the development of successful trading algorithms, which may or 
may not be generalizable to other data sets, but it remains to be 
seen whether they can also provide interesting fundamental 
insights into the dynamics of supply, demand, and price in finan-
cial markets. 
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