
J. Phj.s. I FFance 7 (1997) 431-444 MARCH 1997, PAGE 431

Convergent Multiplicative Processes Repelled from Zero:
Power Laws and llfuucated Power Laws

Didier Sornette (~~~,*) and Rania Cont (~)

(~) Laboratoire de Physique de la MatiAre CondensAe (**), Universit@ des Sciences, BP 70,

Parc Valrose, 06108 Nice Cedex 2, France

(~) Department of Earth and Space Science, and Institute of Geophysics and Planetary Physics,

University of California, Los Angeles, California 90095, USA

(Received 2 September 1996, received in final form 12 November 1996, accepted 20 November

1996)

PACS.05.40.+j Fluctuation phenomena, random processes, and Brownian motion

PACS.64.60.Ht Dynamic critical phenomena
PACS.05.70.Ln Nonequilibrium thermodynamics, irreversible processes

Abstract. Levy and Solomon have found that random multiplicative processes wi =11 A2. At

(with Aj > 0) lead, in the presence of a boundary constraint, to a distribution P(wi) in the form

of a power law w/~~+~~. lve provide a simple exact physically intuitive deri,,ation of this result

based on a random walk analogy and show the following: ii the result applies to the asymptotic
it ~ ml distribution of wt and should be distinguished from the central limit theorem which

is a statement on the asymptotic distribution of the reduced variable ) (log wi (log will; 2)

the two necessary and sufficient conditions for P(1Ji) to be a power la,v are that (logAj) < 0

(corresponding to a drift 1Jt ~ 0) and that 1Jt not be allo,ved to become too small. lve discuss

several models, previously thought unrelated, showing the common underlying mechanism for

the generation of power laws by multiplicative processes: the variable log wt undergoes a random

walk repelled from -oo, which we describe by a
Fokker-Planck equation. 3) For all these models,

we obtain the exact result that
~1

is solution of (A~)
=

1 and thus depends on the distribution of

A. 4) For finite t, the power law is cut-off by a log-normal tail, reflecting the fact that the random

walk has not the time to scatter off the repulsive force to diffusively transport the information

far in the tail.

R4sum4. Levy et Solomon ant montrd qu'un processus multiplicatif du type wi =
Al12.. -At

(avec Aj > 0) conduit, en prdsence d'une contrainte de bord, h une distribution P(wi) en loi de

puiss~nce w/ ~~~~~ Nous proposons une dArivation simple, intuitive et exacte de ce rAsultat basAe

sur une analogie avec une marche aldatoire. Nous obtenons les rdsultats suivants: ii le rAgime de

loi de puissance dAcrit la di~tribution asymptotique de wt aux grands temps et doit Atre distingud

du thAorAme limite central dAcrivant la convergence de la variable rAduite )(log
wt (log wt))

vers la loi Gaussienne; 2) les deux conditions ndcessaires et suflisantes pour que P(wt) soit une

loi de puissance sent (log Aj < 0 (correspondant h une ddrive vers zdro) et la contrainte que wi

soit empAchde de trap s'approcher de zdro. Cette contrainte peut Atre mise en oeuvre de maniAre

variAe, gAnAralisant h une grande classe de modAles le cas d'une barriAre rAflAchissante exarninA

par Levy et Solomon. Nous donnons aussi un traitement approximatif, devenant exact dans
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la limite off la distribution de A est 6troite ou log-normale en terme d'6quation de Fokker-

Planck. 3) Pour tous ces modAles, nous obtenons le rdsultat gAn6ral exact que l'exposant ~lest

la solution de l'6quation (A~)
=

1. p est donc non-universel et d6pend de la spAcificit6 de la

distribution de A. 4) Pour des t finis, la loi de puissance est tronquAe par une queue log-normale

due h une exploration finie de la marche a16atoire.

1. Introduction

Many mechanisms can lead to power law distributions. Power laws have a special status due to

the absence of a characteristic scale and the implicit (to the physicist) relationship with critical

phenomena, a subtle many-body problem in which self-similarity and power laws emerge from

cooperative effects leading to non-analytic behavior of the partition or characteristic function.

Recently, Levy and Solomon iii have presented a novel mechanism based on random multi-

plicative processes:

wi+i =
Atwt, II)

where ii is a stochastic variable with probability distribution Hilt and we express wt in units

of a reference value wu which could be of the form e~~, with
r constant. All our analysis below

then describes the distribution of wt normalized to wu, in other words in the "reference frame"

moving with wu. At the end, we can easily make reappear the scale wu by replacing everywhere

w by w
/wu.

Taken literally with no other ingredient, expression ii) leads to the log-normal distribution

[2-4]. Indeed, taking the logarithm of ii), we can express the distribution of log
w as the

convolution of t distributions of log A. Using the cumulant expansion and going back to the

variable wt leads, for large times t, to

~~~~~
~ ~t

~~~12~t ~~°~ ~~
~~~~

'

(2)

where v =
(log A) e

f/° dA log AH(A) and D
=

((log A)2) (log A)2. Expression (2) can be

rewritten

pj~~) ~p(wt)ut j~)
@$

w)~~~'°~~

with

~~~~~ 2~jt ~°~ ~~ ~~~

Since /J(wt) is a slowly varying function of wi, this form shows that the log-normal distribution

can be mistaken for an apparent power law With an exponent /J slowly varying with the range

wi which is measured. Indeed, it was pointed out [5] that for wt < e<~+~~J~, /J(wi) « I and

the log-normal is undistinguishable from the I /wi distribution, providing a mechanism for II f
noise. Ho~.ever, notice that ~1(wi) ~ cc far in the tail wt » e<~+2~fi and the log-normal

distribution is not a power law.

The ingredient added by Levy and Solomon iii is to constrain wi to remain larger than a

minimum value ~o > 0. This corresponds to put back wi to wo as soon as it would become

smaller. To understand intuitively what happens, it is simpler to think in terms of the variables

z~ =
logwt and

=
log A, here following iii. Then obviously; the equation ii) defines a

random walk in ~-space with steps (positive and negati;e) distributed according to the density
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Fig. 1. Steady-state exponential profile of the probability density of presence of the random walk

with a negative drift and a reflecting barrier.

distribution 7r(1) =
e~H(e~). The distribution of the position of the random walk is similarly

defined: P(~i, t)
=

e~~P(e~~, t).

.
If v e ii

=
(log A) > 0, the random walk is biased and drifts to +cc. As a consequence, the

presence of the barrier has no important consequence and we recover the log-normal distribution

(2) apart from minor and less and less important boundary effects at xo =
log wo, as t increases.

Thus, this regime is without surprise and does not lead to any power law. We can however

transform this case in the following one v e (1) < 0 with a suitable definition of the moving
reference scale wu +~

d~~ such that, in this frame, the random random drifts to the left. But

the barrier has to stay fixed in the moving frame, corresponding to a moving barrier in the

unscaled variable wt.

.
If v e (1) < 0, the random walk drifts towards the barrier. The qualitative picture is the

following (see Figs. 1 and 2): a steady-state it ~ cc) establishes itself in which the net drift

to the left is balanced by the reflection on the reflecting barrier. The random walk becomes

trapped in an effective cavity of size of order D Iv with an exponential tail (see below). Its

incessant motion back and forth and repeated reflections off the barrier and diffusion away

from it lead to the build-up of an exponential probability (concentration) profile land
no more

a
Gaussian). The probability density function of the Walker position x is then of the form e~P~

with
~1 m iv ID. As x is the logarithm of the random variable w, then one obtains a power law

distribution for w of the form
+~

w~l~+P~

We first present an intuitive approximate derivation of the power law distribution and its

exponent, using the Fokker-Planck forinulation in a random walk analogy. In Section 2.2, the

problem is formulated rigorously and solved exactly in Section 2.5. Sections 2.3 and 2.4 are

generalization of the process (1). The explicit calculation of the exponent of the power la~.

distribution is done using a Wiener-Hopf integral equation, showing that it is controlled by
extreme values of the process.
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Fig. 2. al A typical trajectory ofthe random walker at large times showing the multiple reflections

off the barrier. b) The time evolution of the Kesten variable defined by the equation (19) with at

uniformly taken in the interval [0.48;1.48] leading to /J m 1.47 according to (17) and bt uniformly

taken in the interval [0; ii. Notice the intermittent large excursions.

2. The RandoTn Walk Analogy

In the it "
log vii and ii

"
log At variables, expression II) reads

Tt+i = xt + iii (5)

and describes a random walk with a drift ii) < 0 to the left. The barrier at xo =
log wo

ensures that the random walk does not escape to -cc.
This process is described by the Master

equation [11
+03

PIT, t + 1)
#

7r(I)P(X I, t)di. (6)~m

2.I. PERTURBATIVE ANALYSIS. To get a physical intuition of the underlying mechanism,

we now approximate this exact Master equation by its corresponding Fokker-Planck equation.
Usually, the Fokker-Planck equation becomes exact in the limit ~v-here the variance of

~
iii and

the time interval between two steps go to zero while keeping a constant finite ratio defining the

diffusion coefficient [6j. In our case, this corresponds to taking the limit uf very narrow 7r(I)
distributions. In this case, we can expand P(~ l, t) up to second order

~~
i~~

o~P

j~~~~~
pj~ i, t)

"
P(~, ~l ~S'~~'~~ ~

~ °~~

leading to the Fokker-Planck formulation

where u =
(I) and D

=
(12) (I)~ are the leading cumulants of H(logA). j(x, t) is the flux

defined by

J (Xi t)
"

Up IX, f) D °~j ~ ~~ 18)
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Expression (7) is nothing but the conservation of probability. It can be shown that this

description (7) is generic in the limit of very narrow 7r distributions: the details of
7r are

not important for the large t behavior; only its first two cumulants control the results [6j.

u and D introduce a characteristic "length" I
=

D/ju). In the overdamped approxima~
tion, we can neglect the inertia of the random walker, and the general Langevin equation
m(()

=

-i(( + F + Ffluct reduces to

j
= u + ~(t), (9)

which is equivalent to the Fokker-Planck equation (7). ~ is a
iloise of zero mean and delta

correlation,vith variance D. This form exemplifies the competition between drift
u = iv and

diffusion ~(t).

The stationary solution of (7), ~@
=

0, is immediately found to be

Pcc(x)
=

A ~e~~~, (10)
l£

,vith

lL+
)~

(II)

A and B are two constants of integration. Notice that, as expected in this approximation
scheme, /J is the in,>erse of the characteristic length +. In absence of the barrier, the solution

is obviously A
=

B
=

0 leading to the trivial solution Pm ix)
=

0, which is indeed the limit of

the log-normal form (2) when t ~ cc. In the presence of the barrier, there are t,vo equivalent

~v-ays to deal with it. The most obvious one is to impose normalization ~

/m Pm (x)dx
=

1, (12)
~~

where xo % log wo. This leads to

Pmix)
=

/1e~~~~~~°~ i13)

Alternatively,
we can express the condition that the barrier at xo is reflectwe, namely that

the flux j(xo)
=

0. Let us stress that the correct boundary condition is indeed of this type
(and not absorbing for instance) as the rule of the multiplicati,,e process is that we put back

wi to wo when it becomes smaller than wo, thus ensuring wt > wo. An absorbing boundary
condition would correspond to kill the process wlien wt < wo. Substituting (10) in (8) with

j(xo)
"

0, we retrieve (13) which is automatically normalized. Reciprocally, (13) obtained

from (12) satisfies the condition j(xo)
=

0.

There is a faster way to get this result (13) using an analogy with'a Brownian motion in

equilibrium with a thermal bath. The bias (I) < 0 corresponds to the existence of a constant

force vi in the -x direction. This force derives from the linearly increasing potential V
= iv ix.

In thermodynamic equilibrium, a Brownian particle is found at the position x ~v.ith probability
given by the Boltzmann factor e-P'~l~. This is exactly (13) with D

=
I/fl as it should from

the definition of the random noise modelling the thermal fluctuations.

Translating in the initial variable wt "
e~, ,ve get the Paretian distribution

Pm (wt
#

~)(
,

(14)
~~
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~~~~ ~ ~~~~~ ~~ ~~~~
ill°g~ll

(Is)~
" ((log A)~) (log A)~

These two derivations should not give the impression that we have found the exact solution.

As we show below, it turns out that the exponential form is correct but the value of /J given
by (15) is only an approximation. As already stressed, the Fokker-Planck is valid in the limit

of narrow distributions of step lengths. The Boltzmann analogy assumes thermal equilibrium,

i-e- that the noise is distributed according to a Gaussian distribution, corresponding to a

log-normal distribution for the A's. These restrictive hypothesis are not obeyed in general for

arbitrary nil). The power law distribution (14) is sensitive to large deviations not captured
Within the Fokker~Planck approximation.

2.2. EXACT ANALYSIS. In the general case where these approximations do not hold,
we

have to address the general problem defined by the equations IS, 6). Let us consider first the

case where the barrier is absent. As already stated, the random walk eventually escapes to

-cc with probability one. However, it will wander around its initial starting point, exploring
maybe to the right and left sides for a while before escaping to -cc. For a given realization,

we can thus measure the rightmost position xmax it ever reached over all times. What is

the distribution Pmax(Max(0,xmax))? The question has been answered in the mathematical

literature using renewal theory [7j, p. 402) and the answer is

Pmax((MaXjo, ~max))
~

e~~~~'~~, i16j

with /J given by

' /~~ 7r(I)eP~di
=

/~~ H(A)APdA
=

I. II?)
-m o

The proof can be sketched in a few lines [7] and we summarize it because it will be useful

in the sequel. Consider the probability distribution function MIX) e
f]~ Pmax(xmax)dxmax,

that xmax < x.
Starting at the origin, this event xmax < x occurs if the first step of the random

walk verifies xi #
< x together with the condition that the rightmost position of the random

,valk starting from -xi is less or equal to x y. Summing over all possible y, we get the

Wiener-Hopf integral equation

M(x)
=
/~ Mix v)7rlv)dv. (18)

It is straightforward to check that fiI(x) ~ e~P~ for large
x

with /J given by II?). We refer

to [7j for the questions of uniqueness and to [9,10j for classical methods for handling 1Viener-

Hopf integral equations. We shall encounter the same type of i&'iener-Hopf integral equation
in Section 2.5 below which addresses the general case.

How is this result useful for our problem? Intuitively, the presence of the barrier, which

prevents the escape of the random walk, amounts to reinjecting the random walker and enabling
it to sample again and again the large positive deviations described by the distribution (16).
Indeed, for such a large deviation, the presence of the barrier is not felt and the presence of

the drift ensures the validity of (16) for large x. These intuitive arguments are shown to be

exact in Section 2.5 for a broad class of processes.

Let us briefly mention that there is another way to use this problem, on the rightmost
position xmax ever reached, to get an exponential distribution and therefore a power law dis-

tribution in the wt variable. Suppose that we have a constant input of random walkers, say at
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the origin. They establish a uniform flux directed towards -cc. The density (number per unit

length) of these walkers to the right is obviously decaying as given by (16) with II?). This

provides an alternative mechanism for generating power laws, based on the superposition of

many convergent multiplicative processes.

Let us now compare the two results (IS, 17) for /J. It is straightforward to check that (15)
is the solution of (17) when 7r(I) is a Gaussian I.e. nil) is a log-normal distribution. (IS)

can

also be obtained perturbatively from II?) expanding eP~ as eP~
=

I + /JI + )/J~12 +.. up to

second order and re-exponentiating, we find that the solution of II?) is IS). This was expected
from our previous discussion of the approximation involved in the use of the Fokker-Planck

equation.

2. 3. RELATION wiTH KESTEN VARIABLES. Consider the following mixture of multiplicative
and additive process defining a random affine map:

Si+i
=

bi + Aist, (19)

with and b being positive independent random variables. The stochastic dynamical process
(19) has been introduced in various occasions, for instance in the physical modelling of ID

disordered systems ill) and the statistical representation of financial time series [12j. The

variable Sit) is known in probability theory as a Kesten variable [13].
Consider as an example the number of fish St in a lake in the t-th year. The population Si+i

in the It + I)st year is related to the population St through (19). The growth rate ii depends

on the rate of reproduction and the depletion rate due to fishing as well as environmental

conditions, and is therefore a variable quantity. The quantity bt describes the input due to

restocking from an external source such as a fish hatchery in artificial cases, or from migration
from adjoining reservoirs in natural cases. This model (19) can be applied to the problems of

population dynamics, epidemics, investment portfolio growth, and immigration across national

borders [8j. The justification of our interest in (19) relies on the fact that it is the simplest
linear stochastic equation that can provide an alternative modelling strategy for describing
complex time series to the nonlinear deterministic maps. Notice that the multiplicative process,
with a At that can take values larger than I, ensures an intermittent sensitive dependence on

initial conditions. The restocking term bt, or more generally the repulsion from the origin,
corresponds to a reinjection of the dynamics. It is noteworthy that these two ingredients,

of sensitive dependence on initial conditions and reinjection, are also the two fundamental

properties of systems exhibiting chaotic behavior.

b
=

0 recovers II) (without the barrier). For b / 0, it is well-known that for (log A) < 0,
Sit) is distributed according to a power law

Plsi)
+~

Si~~~~~, 12°)

with /J determined by the condition II?) [13j already encountered above (A~)
=

I. In fact, the

derivation of (20) with iii)
uses the result (16) of the renewal theory of large positive excursions

of a random walk biased towards -cc [12j. Figure 3 shows the reconstructed probability density
of the Kesten variable St for At and bi uniformly sampled in the interval [0.48;1.48] and in [0, Ii
respectively. This corresponds to the theoretical value /t m 1.47. We have also constructed

the probability density function of the variations Si+i St of the Kesten variable for the same

values. We observe again a power law tail for the positive and negative variations, with the

same exponent.
This is not by chance and

we now show that the multiplicative process with the reflective

barrier and the Kesten variable are deeply related. First, notice that for (log A) < 0 in absence
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Fig. 3. Reconstructed natural logarithm of the probability density of the Kesten variable St as

a function of the logarithm of St, for 0.48 < ii < 1.48 and 0 < bi < I, uniformly sampled. The

theoretical prediction /J m 1.47 from ii?) is quantitativelv ,>erified.

of b(t); St would shrink to zero. The term bit) can be thought of as an
effective repulsion from

zero and thus acts similarly to the previous barrier wo. To see this more quantitatively, we

form
~~ii ~~

"

)
~ ~~ ~' ~~~~

~Ve make the approximation of~v.riting the finite difference ~'
as

@ It has the same

status as the one used to derive the Fokker-Planck equation and ~ill lead to results correct up

to the second cumulant. Introducing again the variable
x e logs, expression (21) gives the

overdalnped Langevin equation:

j
=

b(t)e~~
)U) + ~(t), 122)

~v.here we have ,vritten lit) 1 as the sum of its mean and a purely fluctuating part. We thus

get u = (A) I t (log A) and D e (~2)
=

(A~) (A)2 ci (log(A)~) (log A)~. Compared to (9),

~v-e see the additional term b(t)e~~, corresponding to a repulsion from the x < 0 region. This

repulsion replaces the reflective barrier, which
can

itself in turn be modelled by a concentrated

force. The corresponding Fokker-Planck equation is

°~l'~~
=

bitje~~Pix, tj iv + bitje~~)°~j~'~i +
D°~ (~l'~i j23j
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It also presents a ~v-ell-defined stationary solution that we can easily obtain in the regions

x ~ +cc and z ~ -cc. In the first case, the terms b(t)e-~ can be neglected and ~v.e recover

the previous results (13) with xo now determined from asymptotic matching with the solution

at x ~ -cc. For x ~ -cc, we can drop all the terms except those in factor of the exponentials
which diverge and get Fix) ~ e~. Back in the wi variable, Pm (St) is a constant for St ~ 0

and decays algebraically- as given by (14) with the exponent ill, IS) for St ~ +cc. Beyond
these approximations. we can solve exactly expression (21) or equi,>alentlj- (19) and we recover

ii?). This is presented in Section 2.5 below. Again~ notice that ill, 15) is equal to the solution

of ii?) up to second order in the cumulant expansion of the distribution of log A.

It is interesting to note that the Kesten process (19) is a generalization of branching processes

[14]. Consider the simplest example of a branching process in which a branch can either die

with probability po or give two branches with probability p2 "
1- po. Suppose in addition that,

at each time step, a new branch nucleates. Then, the number of branches Si+i at generation

t + I is given by- equation (19) with bi
=

I and At
" ~~)~~, where ji+i is the number of

branches out of the St which give two branches. The distribution nil) is simply deduced from

the binouiial distribution of ji+i, nauiely (~(j~ )pl'+~ p(~ ~~'+~
e

~, ~~)jj(j~~~~j,
pl'+~ pl'~~~+~ For

large St, nil) is approximately a Gaussian with a standard deviation equal to
@, I. e. it

goes to zero for large St We thus pinpoint here the key difference bet,veen standarj branching

processes and the Kesten model: in branching models, large generations are self-averaging in

the sense that the number of children at a given generation fluctuates less and less as the size

of the generation increases, in contrast to equation (19) exhibiting the same relative fluctuation

amplitude. This is the fundamental reason for the robustness of the existence of a power law

distribution in contrast to branching models in which a power law is found only for the special

critical case po = p2 (for po > p2, the population dies off, while for po < p2 the population
prolifates exponentially). The same conclusion carries out directly for more general branching
models. Note finally that it can be shown that the branching model previously defined becomes

equivalent to a Kesten process if the number of branches formed from a single one is itself a

random variable distributed according to a power law with the special exponent /t =
I, ensuring

the scaling of the fluctuations ~v-ith the size of the generations.

2.4. GENERALIZATION TO A BROAD CLASS OF MULTIPLICATIVE PROCESS WITH REPULSION

AT THE ORIGIN. The above considerations lead us to propose the following generalization

~
~f(w~,(A<,b<;. )> j ~

(~4)
t+I t 11

where f(wi, Iii, bi, Ill ~ 0 for ~i ~ cc and f(wi, Iii, bt, ))) ~ cc for wi ~ 0.

The model (I) is the special case f(wt, lit, bt, II
=

0 for wt > wo and f(~i, Iii, bi, ))
#

log( fi) for wt < wo. The Kesten model (19) is the special case
f(wi, Iii, bt, ))

"
log(I +

)). More generally, we can consider a process in which at each time step t, after the variable

A~
it generated, the new value ii ~i (or Aiwi + bt in the case of Kesten variables) is readjusted

by a factor ef<~t,l't.~', lJ reflecting the constraints imposed on the dynamical process. It is

thus reasonable to consider the case where f(wi Iii: bi, )) depends on t only through the

dynamical variables ii land in special cases bi), a condition which already holds for the two

examples above. In the following Fokker-Planck approximation, we shall consider the case

where f(wi, Iii, bt, )) is actually a function of the product Aiwi, which is the value generated

by the process at step t and to which the constraint represented by f(Aiwi) is applied. We

shall turn back to the general case (24) in Section 2.5.

In the Fokker-Planck approximation, f(Aiwi) defines an
effective repulsive stochastic force.

To illustrate the repulsive mechanism, it is enough to consider the restricted case where f(wi)
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Fig. 4. Generic form of the potential whose gradient gives the force felt by the random walker.

This leads to a steady-state exponential profile of its density probabilitv, corresponding to a power law

distribution of the wi-variable.

is only a function of wt. This corresponds to freezing the random part in the noise term ii

leading to the definition of the diffusion coefficient. In the random walk analogy, ~v.e thus

have the force F(xt)
"

f(wt) acting on the random walker. The corresponding Fokker-Planck

equation is

~~~~ ~~ ~~~ ~
~~~~~~~ ~~

~ ~
~~~~

~~
~~~~

Fix) decays to zero at x ~ cc and establishes a repulsion of the diffusive process in the negative

x region: this is the translation in the random walk analogy of the condition f(wt) ~ cc for

wi ~ 0.
,

With these properties, the tail of P(~) for large ~ and large times is given by Pm (~)
+~

e~P~,
and as a consequence wi is distributed according to a power law, with exponent /t given again
approximately by ill; 15). The shape of the potential defined by v + Fix)

=

), showing
the fundamental mechanism, is depicted in Figure 4. As we have already not@d, the bound

wo leading to a reflecting barrier is a special case of this general situation, corresponding to a

concentrated repulsive force at ~o.

The expression (24) for the general model can be "derived" from the overdamped Langevin
equation equivalent to the Fokker-Planck equation (25)

:

)
=

Fl~)
)U) + ~lt). 126)

Let us take the discrete version of (26) as ~i+i " xi + F(~t) Iv + ~t, replace with ~i "
log wi

and exponentiate to obtain

wi+i =
eF<i°gW<J>iwi, 127j

where ii %
e~l~l+~t Since F(~) ~ 0 for large wi, we recover a pure multiplicative model

wi+i =
Aiwi for the tail. The condition that Fix) becomes very large for negative x ensures

that wt cannot decrease to zero as it gets multiplied by a diverging number When it goes to

zero.

2.5. EXACT DERIVATION oF THE TAIL oF THE PoivER LAW DisTRiBuTioN. The existence

of a limiting distribution for wt obeying (24), for a large class of f(w, (A, b;.. )) decaying to

zero
for large w and going to infinity for ~ ~ 0, is ensured by the competition between
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the convergence of
w to zero and the sharp repulsion from it. We shall also suppose in what

follows that 0f(w, (A, b,.. )) /0~ ~ 0 for w ~ cc, which is satisfied for a large class of smooth

functions already satisfying the above conditions. It is an interesting mathematical problem
to establish this result rigorously, for instance by the method used in 11,10]. Assuming the

existence of the asymptotic distribution P(w),
we can determine its shape, which must obey

u e w
e~f<"',1',~;. lJ ~# Aw, (28)

~v.here (A, b,.. ) represents the set of stochastic variables used to define the random process.

The expression (28) means that the I.h.s. and r.h.s. have the same distribution. We can thus

write
+m +m +m dj

~Pv (vi
-

d> Hi>) dW Pm iwi~iU >WI
-

illi>iPw iii

Introducing V
=

log u, ~ e log w and e log A, we get

P(1/)
=

/~~ di H(I)P~ iv I). (29)
-m

Taking the logarithm of (28),
we have V

= ~
f(~, (A, b,...)), showing that V ~ ~ for

large ~ > 0, since we have assumed that fix, (A,b,...)) ~ 0 for large
x.

We can write

P(V)dV
=

P~(x)dx leading to P(V)
= ~~~)~))~)J~jj~~~ ~ P~(V) for

x ~ cc.
We thus

recover the Wiener-Hopf integral equation (18) iieiiing the announced results (16) with ii?)
and therefore the power law distribution (14) for wi with /t given by ii?).

This derivation explains the origin of the generality of these results to a large class of con-

vergent multiplicative processes repelled from the origin.

3. Discussion

3. I. NATURE oF THE SoLuTioN. To sum up, convergent multiplicative processes repelled
from the origin lead to power law distributions for the multiplicative variable wi itself. Ideally,
this holds true in the asymptotic regime, namely after an infinite number of stochastic products

have been taken. This addresses a different question than that answered by the log-normal
distribution for unconstrained processes which describes the convergence of the reduced variable

fi (log wt (log wt)) to the Gaussian law. Notice that this reduced variable tends to zero for

our problem and thus does not contain any useful information.

We have presented an intuitive approximate derivation of the power law distribution and its

exponent, using the Fokker-Planck formulation in a random walk analogy. Our main result

is the explicit calculation of the exponent of the power law distribution, as a solution of a

Wiener-Hopf integral equation, showing that it is controlled by extreme values of the process.

We have also been able to extend the initial problem to a large class of systems where the

common feature is the existence of
a

mechanism repelling the variable away from zero. We

have in particular drawn a connection with the Kesten process well-known to produce po~v.er

law distributions. The results presented in this paper are of importance for the description of

many systems in Nature showing complex intermittent self-similar dynamics.

3. 2. THE EXPONENT /t. In the Fokker-Pljnck approximation of the random walk analogy, /t

is the inverse of the size of the effective cavity trapping the random walk. In this approximation,

p is a function of, and only of, the first two cumulants of the distribution of log A. In particular,

if the drift )u) < 2D, /J < 2 corresponding to variables with no variance and even no mean
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,vhen /J < I ()u) < D). It is rather intuitive: large fluctuations in lead to a large diffusion

coefficient D and thus to large fluctuations in wt quantified by a small /J. Recall that the

smaller /J is, the wilder are the fluctuations.

l&iithin an exact formulatiun, we have shown that there is a rather subtle phenomenon

which identifies /J as the inverse of the typical value of the largest excursion against the flow of

a particle in random motion with drift. This holds true for a large class of models characterized

by a negative drift and a sufficiently fast repulsion fi.om the negative domain (in the x-variable).
I.e. from the origin (in the w-variable).

3.3. ADDITIOXAL CONSTRAINT FIXING /L. We recover the relationship relating
/L to the

minimum value wo in the reflecting barrier problem by specifying [ii the value C of the average

(wi). Calculating the average straightforwardly using (14),
we get (wi)

"
wolf, leading to

~
l l~o/Cl ~~~~

Notice that this expression is a special case of (17) and should by no mean be interpreted as

implying that p is cont,rolled by wo in general. This is only true with an additional constraint,

here of fixing the average. The general result is that /J is gi,>en by (17), I.e. at a minimum by
the two first cumulants of the distribution of log A.

3.4. PosiTivE DRIFT iN THE PRESENCE OF AN UPPER BOUND. Consider a purely multi-

plicative process where the drift is re,>ersed (log A) > 0, corresponding to an average exponen-

tial growth of wi in the presence of a barrier wo limiting wt to be smatter thari it. The same

reasoning holds and
a

parallel derivation yields

Pm(wt)
#

§ wf~~, (31)
w~

with /J > 0 again given by (17). This distribution describes the values 0 < wt < MO Notice

that, if /t > 1, the distribution is increasing with vii This is ob,>iously no more a power law of

the tail, rather a power law for the values close to zero. For /t < I; Pm (wi) decays as a power
law, however bounded by MO and diverging at zero (while remaining safely normalized). This

shows that, when speaking of general power law distribution for large values, this regime is not

relevant. Only the regime with negative drift and lower bound is relevant.

However, in the case of Kesten variables (21), if St is growing exponentially with an average

rate (log At) > 0, and if the input flo~v. bi is also increasing with a larger rate r, we
define

bi
=

e~<~+~J(I where ii is a stochastic variable of order one. We also define ii
#

iie~. If

r > (log at), then (log it)
< 0.

The equation II) thus transforms into (t+i
"

it(i
+ ii: ~v-ith St

=

e~~(i, and where it
and ii obey exactly the conditions for our previous analysis to apply. The conclusion is that,
due to input growing exponentially fast, the growth rate of wi becomes that of the input,
its average (which exists for /t > I) grows exponentially as

(Si)
+~

e~~ and its value exhibits

large fluctuations governed by the power la,v probability density function P(St)
+~

fi with /t

solution of lit
=

e~P, leading to /t =

fl@§ in the second order cumulant approximation.

3.$. TRANSIENT BEHAVIOR. For t large but finite, the exponential (16) with (17) is trun-

cated and decays typically like a Gaussian for x > li. Translated in the wt variable, the

power law distribution (14) extends up to ~i +~

e/% and transforms into an approximately
log-normal law for large values. Refining these results for finite t using the theory of renewal

processes is an interesting mathematical problem left for the future.
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3.6. NON-STATIONARY PRocEssEs. ~vhen the multiplicative process (I) is not stationary
in time, for instance if u(t), D(t)

or
xo(t) become function of time, then their characteristic

time T
of evolution must be compared ~v-ith t* ix)

=
x2 ID. For "small"

~ such that t*(~) « T,
the distribution Fix, t) keeps an exponential tail with an exponent adiabatically following
u(t),D(t)

or ~o It). We thus predict a power law distribution for wi but with an exponent
varying with u and D according to equations ill, IS). For "large" x sucll that t*(x) > T, the

diffusion process has not time to reach x and to bounce off the barrier that the parameters
have already changed. It is important to stress again the physical phenomenon at the origin of

the establishment of the exponential profile: the repeated encounters of the diffusing particle
with the barrier. For large x, the repeated encounters take a large time, the time to diffuse

from x to the barrier back and forth. In this regime t*(x) > T, the~exponential profile for

Fix) has not time to establish itself since the parameters of the diffusion evolve faster that the

"scattering time" off the barrier. The analysis of the modification of the tail in the presence of

non-stationarity effects is left to a separate work. In particular, we would like to understand

~v-hat are the processes which lead to an exponential cut-off of the power law in the wi variable,
corresponding to an exponential of an exponential cut-off in the x-variable.

3.7. STATUS oF THE PROBLEM. Levy and Solomon [I] propose that the power law (14)
is to multiplicative processes what the Boltzmann distribution is to additive processes. In the

latter case, the fluctuations can be described by a single parameter, the temperature (fl~~)
defined from the factor in the Boltzmann distribution e~P~. In a nutshell, recall that the

exponential Boltzmann distribution stems from the fact that the number Q of microstates

constituting a macro-state in an equilibrium system is multiplicative in the number of degrees
of freedom while the energy E is additive. This holds true when a system can be partitionned
into ,,-eakly interacti,>e sub-sj,stems. The only solution of the resulting functional equation
Q(Ei + E2)

"
Q(Ei)Q(E2) is the exponential.

No such principle applies in the multiplicative case. Furthermore, the Boltzmann reasoning
that we have used in Section 2.I is valid only under restrictive hypotheses and provides at best

an approximation for the general case. We have sho,vn that the correct exponent /t is in fact

controlled by extreme excursions of the drifting random walk against the main "flo,v" and not

by its average behavior. This rule~ out the analogy proposed by Levy and Solomon.
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