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A Stochastic Partial Differential Equation Model for
Limit Order Book Dynamics\ast 

Rama Cont\dagger and Marvin S. M\"uller\ddagger 

Abstract. We propose an analytically tractable class of models for the dynamics of a limit order book, described
through a stochastic partial differential equation with multiplicative noise for the order book centered
at the mid-price, along with stochastic dynamics for the mid-price which is consistent with the
order flow dynamics. We provide conditions under which the model admits a finite-dimensional
realization driven by a (low-dimensional) Markov process, leading to efficient methods for estimation
and computation. We study two examples of parsimonious models in this class: a two-factor model
and a model in which the order book depth is mean reverting. For each model we perform a detailed
analysis of the role of different parameters, study the dynamics of the price, order book depth,
volume, and order imbalance, provide an intuitive financial interpretation of the variables involved,
and show how the model reproduces statistical properties of price changes, market depth, and order
flow in limit order markets.

Key words. limit order book, market microstructure, stochastic PDE, moving boundary problem, volatility,
liquidity
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Financial instruments such as stocks and futures are increasingly traded in electronic,
order-driven markets, in which orders to buy and sell are centralized in a limit order book
and market orders are executed against the best available offers in the limit order book.
The dynamics of prices in such markets are interesting not only from the viewpoint of market
participants---for trading and order execution---but also from a fundamental perspective, since
they provide a detailed view of the dynamics of supply and demand and their role in price
formation.

The availability of a large amount of high frequency data on order flow, transactions,
and price dynamics on these markets has instigated a line of research which, in contrast
to traditional market microstructure models which make assumptions on the behavior and
preferences of various types of agents, focuses on the statistical modeling of aggregate order
flow and its relation with price dynamics, in a quest to understand the interplay between price
dynamics and order flow of various market participants (Cont, 2011).

A fruitful line of approach to these questions has been to model the stochastic dynamics
of the limit order book, which centralizes all buy and sell orders, either as a queueing system
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(Luckock, 2003; Smith et al., 2003; Cont, Stoikov, and Talreja, 2010; Cont and de Larrard,
2012; Cont and de Larrard, 2013; Kelly and Yudovina, 2018) or, at a coarse-grained level,
through a (stochastic) PDE describing the evolution of the distribution of buy and sell orders
(Lasry and Lions, 2007; Caffarelli, Markowich, and Pietschmann, 2011; Burger et al., 2013;
Carmona and Webster, 2019; Markowich, Teichmann, and Wolfram, 2016; Hambly, Kalsi, and
Newbury, 2020; Horst and Kreher, 2018). These PDE models may be viewed as scaling limits
of discrete point process models (Cont and de Larrard, 2012; Hambly, Kalsi, and Newbury,
2020; Horst and Kreher, 2018).

Although joint modeling of order flow at all price levels in the limit order book is more
appealling, (stochastic) PDE models have lacked the analytical and computational tractability
needed for applications; as a result, most analytical results have been derived using reduced-
form models of the best bid-ask queues (Cont and de Larrard, 2012; Cont and de Larrard,
2013; Chavez-Casillas and Figueroa-Lopez, 2017; Huang, Lehalle, and Rosenbaum, 2017).

We propose a class of stochastic models for the dynamics of the limit order book which
represent the dynamics of the entire order book while retaining at the same time the analyt-
ical and computational tractability of low-dimensional Markovian models and that provides
realistic dynamics for the joint dynamics of the market price and order book depth. Starting
with a description of the dynamics of the limit order book via a stochastic partial differential
equation (SPDE) with multiplicative noise, we show that in many cases, the solutions of this
equation may be parameterized in terms of a low-dimensional diffusion process, which then
makes the model computationally tractable. In particular, we are able to derive analytical
relations between model parameters and various observable quantities. This feature may be
used for calibrating model parameters to match statistical features of the order flow and leads
to empirically testable predictions, which we proceed to test using high-frequency time series
of order flow in electronic equity markets.

Outline. Section 1 introduces a description of the dynamics of a limit order book through
an SPDE. We describe the various terms in the equation and their interpretation and discuss
the implications for price dynamics (section 1.3). This class of models is part of a more
general family of SPDEs driven by semimartingales, introduced in section 1.5 and studied in
section 2.

We then focus on two analytically tractable examples: a two-factor model (section 3) and
a model with mean-reverting depth and imbalance (section 4). For each model we perform a
detailed analysis of the role of different parameters and study the dynamics of the price, order
book depth, volume, and order imbalance, provide an intuitive financial interpretation of the
variables involved, and show how the model may be estimated from financial time series of
price, volume, and order flow.

1. An SPDE model for limit order book dynamics. We consider a market for a financial
asset (stock, futures contract, etc.) in which buyers and sellers may submit limit orders to
buy or sell a certain quantity of the asset at a certain price, and market orders for immediate
execution against the best available price.1 Limit orders awaiting execution are collected in
the limit order book, an example of which is shown in Figure 1: at any time t, the state of

1In the following we do not distinguish market orders and marketable limit orders, i.e., limit orders with a
price better than the best price on the opposite side.
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746 RAMA CONT AND MARVIN S. M\"ULLER

Figure 1. Snapshot of the NASDAQ limit order book for CISCO shares (January 30, 2018), displaying
outstanding buy orders (green) and sell orders (red) awaiting execution at different prices. The highest buying
price ($42.15 in this example) is the bid and the lowest selling price ($42.16) is the ask.

the limit order book is summarized by the volume V (t, p) of orders awaiting execution at
price levels p on a grid with mesh size given by the minimum price increment or tick size \delta .
By convention we associate negative volumes with buy orders and positive volumes with sell
orders, as shown in Figure 1. An admissible order book configuration is then represented by
a function p \mapsto \rightarrow V (p) such that

0 < sb(V ) := sup\{ p > 0, V (p) < 0\} \leq sa(V ) := inf\{ p > 0, V (p) > 0\} < \infty .

sb(V ) (resp., sa(V )) is called the bid (resp., ask) price and represents the price associated
with the best buy (resp., sell) offer. The quantity

S =
sa(V ) + sb(V )

2

is called the mid-price and the difference sa(V )  - sb(V ) is called the bid-ask spread. In the
example shown in Figure 1, sb(V ) = 42.15, sa(V ) = 42.16 and the bid-ask spread is equal in
this case to the tick size, which is 1 cent.

One modeling approach has been to represent the dynamics of V (t, p) as a spatial (marked)
point process (Luckock, 2003; Cont, Stoikov, and Talreja, 2010; Cont and de Larrard, 2013;
Kelly and Yudovina, 2018). These models preserve the discrete nature of the dynamics at high
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frequencies but can become computationally challenging as one tries to incorporate realistic
dynamics. In particular, price dynamics, which is endogenous in such models, is difficult to
study, even when the order flow is a Poisson point process.

When the bid-ask spread and tick size \delta are much smaller than the price level, as is often
the case, another modeling approach is to use a continuum approximation for the order book,
describing it through its density v(t, p) representing the volume of orders per unit price:

V (t, p) \simeq v(t, p)\delta .

The evolution of the density of buy and sell orders is then described through a PDE. A
deterministic description of the dynamics of order densities through a system of coupled
PDEs was proposed by Lasry and Lions (2007) and studied in detail by Chayes et al. (2009),
Caffarelli, Markowich, and Pietschmann (2011), and Burger et al. (2013). In the Lasry--Lions
model, the evolution of the density of buy and sell orders is described by a pair of diffusion
equations coupled through the dynamics of the price, which represents the free boundary
between prices of buy and sell orders. This model is appealing in many respects, especially
in terms of analytical tractability, but leads to a deterministic price process which decays to
a constant price, so does not provide any insight into the relation between liquidity, depth,
order flow, and price volatility. Markowich, Teichmann, and Wolfram (2016) explore some
stochastic extensions of this model but essentially show that these extensions do not provide
realistic price dynamics.

We adopt here this continuum approach for the description of the limit order book but de-
scribe instead its dynamics through a stochastic PDE, paying close attention to price dynamics
and its relation with order flow.

The model we propose shares some features with Lasry and Lions (2007) but also has
some essential differences. Unlike the Lasry--Lions model, which is a free boundary problem
in which the dynamics of the price is implicitly determined, we formulate the model as an
SPDE in relative price coordinates, which leads to a stochastic moving boundary problem in
absolute price coordinates. This leads to a more realistic joint dynamics for the market price
and order book depth which can be related to empirical observations. Our model also relates
to the classes of models studied in Horst and Kreher (2018) and Hambly, Kalsi, and Newbury
(2020) as scaling limits of discrete queueuing systems.

We now describe our model in some detail.

1.1. State variables and scaling transformations. We focus on the case where the tick
size \delta and the bid-ask spread are small compared to the typical price level and consider a limit
order book described in terms of a mid-price St and the density v(t, p) of orders at each price
level p, representing buy orders for p < St and sell orders for p > St. We use the convention,
shown in Figure 1, of representing buy orders with a negative sign and sell orders with a
positive sign, so

v(t, p) \leq 0 for p < St and v(t, p) \geq 0 for p > St.

Limit orders are executed against market orders according to price priority and their
position in the queue; execution of a limit order occurs only if they are located at the best
(buy/sell) prices. This means that price dynamics is determined by the interaction of market
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748 RAMA CONT AND MARVIN S. M\"ULLER

orders with limit orders of opposite type at or near the interface defined by the best price
(Cont, Stoikov, and Talreja, 2010). Due to this fact, most limit orders are submitted close
to the best price levels: the frequency of limit order submissions is highly inhomogeneous as
a function of distance to the best price and concentrated near the best price. As shown in
previous empirical studies, order flow intensity at a given distance from the best price can
be considered as a stationary variable in a first approximation (Bouchaud, Farmer, and Lillo,
2009; Cont, Stoikov, and Talreja, 2010). For this reason, in a stochastic description it is more
convenient to model the dynamics of order flow in the reference frame of the (mid-)price St.
We define

ut(x) = v(t, St + x),

where x represents a distance from the mid-price. We refer to ut as the centered order book
density.

The simplest way of centering is to set x(p) = p  - St but other, nonlinear, scalings may
be of interest. Although limit orders may be placed at any distance from the bid/ask prices,
price dynamics is dominated by the behavior of the order book a few levels above and below
the mid-price (Cont and de Larrard, 2012). This region becomes infinitesimal if the tick size
\delta is naively scaled to zero, suggesting that the correct scaling limit is instead one in which we
choose as coordinate a scaled version (p  - St), as classically done in boundary layer analysis
of PDEs (Schlichting and Gersten, 2017), in order to zoom into the relevant region:

(1.1) x(p) :=  - (St  - p)a, p < St, x(p) = (p - St)
a, p > St, a > 0,

for bid and ask sides, respectively. We will consider examples of such nonlinear scalings when
discussing applications to high-frequency data in sections 3 and 4.

These arguments also justify limiting the range of the argument x to a bounded interval
[ - L,+L], setting ut(x) = 0 for x /\in ( - L,L). This amounts to assuming that no orders are
submitted at price levels at distances | x| \geq L from the mid-price and that orders previously
submitted at some price p are canceled as soon as | St  - p| \geq L, i.e., when the mid-price St

moves away from p by more than L. When L is a large multiple of daily volatility, this is a
realistic assumption. In some markets (for example, futures contracts), limit orders can be in
fact submitted only within a range \pm L of the mid-price.

1.2. Dynamics of the centered limit order book. Empirical studies on intraday order
flow in electronic markets reveal the coexistence of two very different types of order flow
operating at different frequencies (Lehalle and Laruelle, 2018).

On one hand, we observe the submission (and cancellation) of orders queueing at various
price levels on both sides of the market price by regular market participants. Cancellation may
occur in several ways: we distinguish outright cancellations, which we model as proportional
to current queue size, from cancellations with replacement (``order modifications""), in which
an order is canceled and immediately replaced by another one of the same type, usually at a
neighboring price limit. The former results in a net decrease in the volume of the order book
whereas the latter is conservative and simply shifts orders across neighboring levels of the book.
Further decomposing this conservative flow into a symmetric and an antisymmetric part leads
to two terms in the dynamics of ut: a diffusion term representing the cancellation of orders
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and their (symmetric) replacement by orders at neighboring price levels and a convection (or
transport) term representing the cancellation of orders and their replacement by orders closer
to the mid-price. Denoting by \nabla the gradient in the variable x, the net effect of this order
flow on the order book may thus be described as a superposition of

 \triangleleft  \triangleleft  \triangleleft a term f b(x) (resp., fa(x)) representing the rate of buy (resp., sell) order submissions
at a distance x from the best price;

 \triangleleft  \triangleleft  \triangleleft a term \alpha b ut(x) (resp., \alpha a ut(x)) representing (outright) proportional cancellation of
limit buy (resp., sell) orders at a distance x from the mid-price (where \alpha a, \alpha b \leq 0);

 \triangleleft  \triangleleft  \triangleleft a convection term  - \beta b\nabla ut(x) (resp., +\beta a\nabla ut(x)) with \beta a, \beta b > 0 which models the
replacement of buy (resp., sell) orders by orders closer to the mid-price (i.e., closer to
x = 0, hence the signs in these terms): in the reference frame where the origin is the
mid-price, this translates into a flow of volume toward the origin;

 \triangleleft  \triangleleft  \triangleleft a diffusion term \eta b\Delta ut(x) (resp., \eta a\Delta ut(x)) which represents the cancellation and
symmetric replacement of orders at a distance x from the mid-price.

Another component of order flow is the one generated by high-frequency traders (HFT). These
market participants buy and sell at very high frequency and under tight inventory constraints,
submitting and canceling large volumes of limit orders near the mid-price and resulting in an
order flow whose net contribution to total order book volume is zero on average over longer
time intervals but whose sign over small time intervals fluctuates at high frequency. At
the coarse-grained time scale of the average (non-high-frequency) market participants, these
features may be modeled as a multiplicative noise term of the form

 \triangleleft  \triangleleft  \triangleleft \sigma but(x)dW
b for buy orders (x < 0) and \sigma aut(x)dW

a for sell orders (x > 0),
where (W a,W b) is a two-dimensional Wiener process (with possibly correlated components).
The multiplicative nature of the noise accounts for the high-frequency cancellations associated
with HFT orders.

The impact of these different order flow components may be summarized by the following
SPDE for the centered order book density u:

dut(x) = [\eta a\Delta ut(x) + \beta a\nabla ut(x) + \alpha aut(x) + fa(x)] dt+ \sigma aut(x) dW
a
t , x \in (0, L),

dut(x) =
\Bigl[ 
\eta b\Delta ut(x) - \beta b\nabla ut(x) + \alpha but(x) - f b(x)

\Bigr] 
dt+ \sigma but(x) dW

b
t , x \in ( - L, 0),

ut(x) \leq 0, x < 0, ut(x) \geq 0, x > 0,

ut(0+) = ut(0 - ) = 0, ut( - L) = ut(L) = 0.(1.2)

Here \eta a, \eta b, \beta b, \beta a, \sigma a, \sigma b \in (0,\infty ), \alpha a, \alpha b \leq 0 and fa, f b : I \rightarrow [0,\infty ) although the equation
may be equally considered without these sign restrictions.

Note that, unlike the Lasry--Lions model, there is no ``smooth pasting"" condition at x = 0:
in general \nabla ut(0+) \not = \nabla ut(0 - ); the difference \nabla ut(0+)  - \nabla ut(0 - ) is in fact random and
represents an imbalance in the flow of buy and sell orders, which drives price dynamics. This
important feature is discussed in section 1.3 below.

Remark 1.1. In simple price impact models used in the literature on optimal trade execu-
tion it is assumed that the relation between price impact and order size is deterministic. This
corresponds to the case \alpha u + f = \beta = \sigma = \eta = 0 which leads to a constant centered order
book profile ut(.) = u0(.). These terms thus correspond to deformations of the centered order
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750 RAMA CONT AND MARVIN S. M\"ULLER

book profile due to new order book events and lead to a stochastic market impact of trades
dependent on the current state of the order book.

The existence of a solution satisfying the boundary and sign constraints is not obvious but
we will see in section 2 that (1.2) is well-posed: it follows from Da Prato and Zabczyk (2014,
Theorem 6.7) and Milian (2002, Theorem 3) that when fa, fb \in L2(I), then for all u0 \in L2(I)
there exists a unique weak solution of (1.2) (see Definition 2.2 below) and when u0| (0,L) \geq 0
and u0| ( - L,0) \leq 0 this solution satisfies

(1.3) ut| (0,L) \leq 0, ut| ( - L,0) \geq 0.

We will study the mathematical properties of the solution in more detail below.

1.3. Price dynamics. The dynamics of the limit order book determines the dynamics of
the bid and ask price, which corresponds to the location of the best (buy and sell) orders.
The dynamics of the price should thus be related to the arrival and execution of orders in the
order book.

To understand the relation between price dynamics and order flow, let us take a step back
and consider an order book with discrete price levels, multiples of a tick size \delta , Db orders per
level on the bid side, and Da orders per level on the ask side. Price changes during a time
interval [t, t + \Delta t] are triggered through the interaction of the net order flow, or order flow
imbalance and the outstanding limit orders at the top of the order book (Cont, Kukanov, and
Stoikov, 2014). As illustrated in Figure 2, an order flow imbalance of \Delta Da

t > 0 on the ask
side over a short time interval [t, t+\Delta t] represents an excess of buy orders, which will then be
executed against limit sell orders sitting on the ask side and move the ask price by \Delta Da

t /D
a

ticks, resulting in a price move of \delta \Delta Da
t /D

a. Similarly, an order flow imbalance \Delta Db
t on the

bid side will move the bid price up by \Delta Db
t/D

b ticks. Using our sign conventions for buy/sell
volumes, this leads to the dynamics

\Delta sbt = \delta 
\Delta Db

t

Db
t

\Delta sat =  - \delta 
\Delta Da

t

Da
t

,

so the dynamics of the mid-price st = (sbt + sat )/2 is given by

(1.4) \Delta St =
\delta 

2

\biggl( 
\Delta Db

t

Db
t

 - \Delta Da
t

Da
t

\biggr) 
.

This relation is exact (up to rounding) in the case of a discrete order book with constant depth
per level (and thus no empty levels), as shown in Figure 2. However, in a dynamic setting
where the order book may have an arbitrary profile which randomly shifts at each instant,
one can only expect a ``homogenized"" version of (1.4) to hold:

(1.5) \Delta St = \theta 

\biggl( 
\Delta Db

t

Db
t

 - \Delta Da
t

Da
t

\biggr) 
,

where \theta is an impact coefficient which relates order imbalance to price movements. This
relation between order flow imbalance and price movements has been empirically verified in
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Figure 2. Impact of order flow imbalance on the order book and the price.

equity markets (Cont, Kukanov, and Stoikov, 2014), and we shall use it as a basis for defining
the relation between price dynamics and order flow in our model.

Let us now see how the relation (1.5) translates in terms of the variables in our model.
Denote by Db

t (resp., Da
t ) the volume of buy (resp., sell) limit orders at the top of the book

(i.e., the first or average of the first few levels). Given a mid-price S \in \BbbR +, we define a
scaling transformation x : [S, S + L] \rightarrow [0,\infty ) as discussed in section 1.1, with continuously
differentiable inverse and such that x(S) = 0. The volume Da in the best ask queue is then
given by

(1.6) Da =

\int s+\delta 

s
u(x(p)) dp =

\int x(s+\delta )

0
u(y)(x - 1)\prime (y) dy.

Db may be similarly defined for the bid side. These quantities represent the depth at the top
of the book; we will refer to them as ``market depth."" In the case of linear scaling x(p) = p - S,
using u(0) = 0 a second-order expansion in \delta > 0 yields

(1.7) Da =

\int \delta 

0
u(x) dx \approx \delta u(0+) +

\delta 2

2
\nabla u(0+) =

\delta 2

2
\nabla u(0+).

Similarly, for the bid side

(1.8) Db \approx \delta 2

2
\nabla u (0 - ) .

Substituting these expressions in (1.5), we obtain the following dynamics of the mid-price:

(1.9) dSt = \theta 

\biggl( 
dDb

t

Db
t

 - dDa
t

Da
t

\biggr) 
= \theta 

\biggl( 
d\nabla ut(0 - )

\nabla ut(0 - )
 - d\nabla ut(0+)

\nabla ut(0+)

\biggr) 
.

We observe that price dynamics is entirely determined by the order flow at the top of the
book and the depth of the limit order book around the mid-price. The tick size \delta , used in
the derivation, does not appear anymore in (1.9). The only trace of the microstructure is
the impact coefficient \theta which relates the order flow imbalance to the magnitude of the price
change, and whose amplitude may vary across assets.
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Remark 1.2. Equation (1.9) requires left and right differentiability of u at the origin. This
can be guaranteed whenever ut takes values in the Sobolev space H2\gamma (I) for some \gamma > 3/4,
which will be the case in our model. Note, however, that, in contrast to Lasry and Lions (2007),
in general \nabla u(0+) \not = \nabla u(0 - ): the difference between these two quantities is proportional to
the order flow imbalance which drives price moves.

Remark 1.3. As noted in Remark 1.1, the case \alpha u+ f = \beta = \sigma = \eta = 0 corresponds to a
constant centered order book profile ut = u0. In this case, (1.9) implies dSt = 0, i.e., the price
is constant, which is consistent with a zero net order flow. This is a (desirable) consequence
of the consistency between the price dynamics (1.9) and the order book dynamics (1.2).

1.4. Dynamics in absolute price coordinates. The model above describes dynamics of
the order book in relative price coordinates, i.e., as a function of the (scaled) distance from
the mid-price. The density of the limit order book parameterized by the (absolute) price level
p \in \BbbR is given by

(1.10) vt(p) = ut(p - St), x \in \BbbR ,

where we extend ut to \BbbR by setting ut(y) = 0 for y \in \BbbR \setminus [ - L,L]. Assume St follows an
(arbitrary) It\^o process

dSt = \theta \mu t dt+ \theta \xi bt dW b
t  - \theta \xi at dW a

t ,

where \theta > 0 and \mu t is predictable and integrable and \xi at and \xi bt are predictable and square-
integrable processes. This includes the case of price dynamics (1.9), which can be used to
express \mu t, \xi 

a
t , \xi 

b
t in terms of ut and model parameters. We will not go into such detail here

but will return to this in the examples in sections 3 and 4. Define

\^\xi t :=
\sqrt{} 

(\xi bt )
2 + (\xi at )

2  - 2\varrho a,b\xi 
b
t \xi 

a
t , t \geq 0.

Using a (generalized) It\^o--Wentzell formula (see Appendix A), we can show that v is the
solution of a stochastic moving boundary problem (Mueller, 2018):

dvt(p) =
\Bigl[ 
(\eta a +

1
2\theta 

2\^\xi 2t )\Delta vt(p)(1.11)

+
\Bigl( 
\beta a  - \theta \mu t  - \theta \sigma a(\varrho a,b\xi 

b
t  - \xi at )

\Bigr) 
\nabla vt(p) + \alpha avt(p)

\Bigr] 
dt

+ (\sigma avt(p) + \theta \xi at \nabla vt(p)) dW
a
t  - \theta \xi bt\nabla vt(p) dW

b
t ,

for p \in (St, St + L), and

dvt(p) =
\Bigl[ 
(\eta b +

1
2\theta 

2\^\xi 2t )\Delta vt(p)(1.12)

+( - \theta \mu t  - \beta b  - \theta \sigma b(\xi 
b
t  - \varrho a,b\xi 

a
t ))\nabla vt(x) + \alpha bvt(p)

\Bigr] 
dt

+ \theta \xi at \nabla vt(p) dW
a
t +

\Bigl( 
\sigma bvt(p) - \theta \xi bt\nabla vt(p)

\Bigr) 
dW b

t

for x \in (St  - L, St) with the moving boundary conditions

(1.13) vt(St) = 0, vt(y) = 0 \forall y \in \BbbR \setminus (St  - L, St + L).
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We refer to (1.13) as a stochastic boundary condition at St.
Here, we assumed for simplicity that fa, f b = 0. A more detailed discussion of this result

is given in Appendix A.

1.5. Linear evolution models for order book dynamics. We will now describe a more
general class of linear models for order book dynamics, rich enough to cover the examples we
discussed so far, but also covering all level-1 models where the best bid and ask queue are
modeled by positive semimartingales. Generally, the densities of orders in the bid and ask
side will take values in some function spaces Hb and Ha, respectively. We assume that orders
at relative price level x for | x| \geq L \in (0,\infty ] will be canceled. The relative price levels are on
the bid side Ib := ( - L, 0) and on the ask side Ia := (0, L). Then, in order to preserve the
interpretation of a density it will be reasonable to ask Hb \subset L1

loc(I
b) and Ha \subset L1

loc(I
a). From

the mathematical side, we will assume that Ha and Hb are real separable Hilbert spaces. For
notational convenience we now also set I := Ib \cup Ia.

The density of limit orders at relative price level x and time t is given by u : I\times [0,\infty )\times \Omega \rightarrow 
\BbbR such that u \star := u| I \star is an H \star -valued adapted process. The initial state is described by
h : I \rightarrow \BbbR such that h \star := h| I \star is an element in H \star . The (averaged) intrabook dynamics are
modeled by linear operators A \star : dom(A \star ) \subset H \star \rightarrow H \star , for  \star \in \{ a, b\} , which we assume to be
densely defined and such that for  \star \in \{ a, b\} there exist weak solutions in H \star of the equations

(1.14) \partial 
\partial tg

 \star 
t (h

 \star ) = A \star g
 \star 
t (h

 \star ), t > 0, g \star 0(h
 \star ) = h \star ,

for each initial state h \star \in H \star .
The random order arrivals and cancellations are assumed to be proportional and are

modeled by c\`adl\`ag semimartingales Xb and Xa, which we assume to have jumps greater than
 - 1 almost surely. We assume the initial order book state is denoted by h \in H and we write
ha := h| Ia , hb := h| Ib .

Model 1.4 (linear homogeneous evolution). The general form of the linear homogeneous
model is

(1.15)

\Biggl\{ 
dubt = Abu

b
t - dt+ ubt - dXb

t on Ib,

duat = Aau
a
t - dt+ uat - dXa

t on Ia,

for t \geq 0, and u0 = h. u can be alternatively expressed as

(1.16) ut = gbt (h
 \star )\scrE t(Xb)1Ib + gat (h

 \star )\scrE t(Xa)1Ia ,

where gb and ga are solutions of (1.14); see Theorem 2.5 below. If, in addition, t \mapsto \rightarrow \nabla gbt (0 - )
and t \mapsto \rightarrow \nabla gat (0+) are of bounded variation, then we obtain the price dynamics (1.9).

Corollary 1.5. Assume the setting of Model 1.4 and, in addition, that h \star is an eigenfunction
of  - A \star with eigenvalue \nu  \star \in \BbbR for  \star = b and  \star = a. Then, (1.14) can be solved explicitly and

(1.17) ut = hbe - \nu bt\scrE t(Xb)1Ib + hae - \nu at\scrE t(Xa)1Ia .

Remark 1.6. In case that Xb and Xa are (local) martingales, the eigenvalues  - \nu b and  - \nu a
play the role of net order arrival rates on the bid and the ask side, respectively.
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754 RAMA CONT AND MARVIN S. M\"ULLER

Model 1.7 (linear models with source terms). A more realistic setting assumes in addition
an influx/outflow of orders at a rate fa(x), f b(x) which depends on the distance x to the
mid-price (Cont, Stoikov, and Talreja, 2010). The equation then becomes

(1.18)

\left\{   dubt =
\Bigl( 
Abu

b
t + f b

\Bigr) 
dt+ ubt dX

b
t on Ib,

duat = (Aau
a
t + fa) dt+ uat dXa

t on Ia,

for t \geq 0, with initial condition u0 = h.
As we will discuss in section 4, an interesting case is when f b (resp., fa) is an eigen-

function of  - Ab (resp.,  - Aa) associated with some eigenvalue \nu b (resp., \nu a). Then by Theo-
rem 2.10 we obtain

(1.19) ut =
\Bigl( 
gbt (h

b  - fa)\scrE t(Xb) + f bZb
t

\Bigr) 
1Ib + (gat (h

a  - fa) + faZa
t )1Ia ,

where, for  \star \in \{ a, b\} , Z \star 
t is the solution of

(1.20) dZ \star 
t = (1 - \nu  \star Z

 \star 
t - ) dt+ Z \star 

t - dX \star 
t , t \geq 0, Z \star 

0 = 1.

Remark 1.8. If \nu b, \nu a > 0 the state of the order book is mean reverting to the state
f b1[ - L,0) + fa 1(0,L]. We will give an example of such a mean-reverting order book model in
section 4.

Remark 1.9. Any model for the dynamics of the order book implies a model for price
dynamics via (1.9). In particular this implies a relation between price volatility and parameters
describing order flow, in the spirit of Cont and de Larrard (2013). We will derive this relation
for the examples studied in what follows and use it to construct a model-based intraday
volatility estimator.

In the next section, we will study this class of models from a mathematical point of view.
We will then continue with the analysis of the two examples mentioned above in sections 3
and 4.

2. Linear stochastic PDE models with multiplicative noise. In order to further study
the properties of the SPDE model (1.2), we require a more explicit characterization of the
solution, in order to compute various quantities of interest and estimate model coefficients
from observations. A useful approach is to look for a finite-dimensional realization of the
infinite-dimensional process u.

Definition 2.1 (finite-dimensional realizations). A process u = (ut)t\geq 0 taking values in an
(infinite-dimensional) function space E is said to admit a finite-dimensional realization of
dimension d \in \BbbN if there exists an \BbbR d-valued stochastic process Z = (Z1, . . . , Zd) and a map

\phi : \BbbR d \rightarrow E such that \forall t \geq 0, ut = \phi (Zt).

Availability of a finite-dimensional realization for the SPDE (1.2) makes simulation, com-
putation, and estimation problems more tractable, especially if the process Z is a low-
dimensional Markov process. Existence of such finite-dimensional realizations for SPDEs
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have been investigated for SPDEs arising in filtering (L\'evine, 1991) and interest rate model-
ing (Filipovic and Teichmann, 2003; Gaspar, 2006).

We will now show that finite-dimensional realizations may indeed be constructed for a
class of SPDEs which includes (1.2), and we use this representation to perform an analytical
study of these models.

2.1. Homogeneous equations. We now consider a more general class of linear homoge-
neous evolution equations with multiplicative noise taking values in a real separable Hilbert
space (H, \langle \cdot , \cdot \rangle H). Typically, H will be a function space such as L2(I) for some interval I \subset \BbbR .
We consider the following class of evolution equations:

dut = Aut - dt+ ut - dXt, t > 0,

u0 = h0 \in H,
(2.1)

whereX is a real c\`adl\`ag semimartingale whose jumps satisfy \Delta Xt >  - 1 a.s. and A : dom(A) \subset 
H \rightarrow H a linear operator on H whose adjoint we denote by A\ast . We assume that dom(A) \subset H
is dense and A is closed. Since A is closed we have that also dom(A\ast ) \subset H is dense and that
A\ast \ast = A (Yosida, 1995, Theorem VII.2.3).

Definition 2.2. An adapted H-valued stochastic process (ut) is an (analytical) weak solution
of (2.1) with initial condition h0 if, for all \varphi \in dom(A\ast ), [0,\infty ) \ni t \mapsto \rightarrow \langle ut, \varphi \rangle H \in \BbbR is c\`adl\`ag
a.s. and for each t \geq 0, a.s.

\langle ut, \varphi \rangle H  - \langle h0, \varphi \rangle H =

\int t

0
\langle us - , A\ast \varphi \rangle H ds+

\int t

0
\langle us - , \varphi \rangle H dXs.

The case X \equiv 0 corresponds to a notion of weak solution for the PDE:

(2.2) \forall t > 0, \partial 
\partial tgt = Agt, g0 = h0.

That is, for all \varphi \in dom(A\ast ),

(2.3) \langle gt, \varphi \rangle H  - \langle h0, \varphi \rangle H =

\int t

0
\langle gs, A\ast \varphi \rangle H ds,

where the integral on the right-hand side is assumed to exist.2 In particular, this yields that
[0,\infty ) \ni t \mapsto \rightarrow \langle gt, \varphi \rangle H \in \BbbR is continuous.

Remark 2.3. By considering bid and ask side separately, we can bring (1.2) into the form
of (2.1), where X is a Brownian motion and A is given by A := \eta \Delta \pm \beta \nabla +\alpha Id on H := L2(I),
I := (0, L), or I := ( - L, 0), with domain

dom(A) := H2(I) \cap H1
0 (I),

where H1
0 (I) is the closure in H1(I) of test functions with compact support in I.

Denote by Zt = \scrE t(X) the stochastic exponential of X. We recall the following useful
lemma (see, e.g., Karatzas and Kardaras (2007, Lemma 3.4)).

2Note that this slightly differs from the classical formulation of weak solutions for PDEs.
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Lemma 2.4. Let

(2.4) Yt :=  - Xt + [X,X]ct +
\sum 
s\leq t

(\Delta Xs)
2

1 + \Delta Xs
, t \geq 0,

Then, \scrE t(X)\scrE t(Y ) = 1 almost surely for all t \geq 0. Moreover,

(2.5) [X,Y ] =  - [X,X]c  - 
\sum 
s\leq \cdot 

(\Delta Xs)
2

1 + \Delta Xs
.

Theorem 2.5. Let Z := \scrE (X), h0 \in H. Then every weak solution of (2.1) is of the form

ut := Ztgt, t \geq 0,

where g is a weak solution of (2.2).

Remark 2.6. In particular, the SPDE (2.1) admits a two-dimensional realization in the
sense of Definition 2.1 with factor process (t, \scrE t(X)) and \phi (t, y) := ygt.

Proof. Set ut := gtZt, t \geq 0, and for \varphi \in D(A\ast ) write B\varphi 
t := \langle gt, \varphi \rangle H , C\varphi 

t := B\varphi 
t Zt =

\langle ut, \varphi \rangle H . Since t \mapsto \rightarrow \langle gt, \varphi \rangle H is continuous and Z is scalar and c\`adl\`ag, we get that t \mapsto \rightarrow \langle ut, \varphi \rangle H
is c\`adl\`ag. Note that B\varphi is of finite variation and Z is a semimartingale, so that also C\varphi is
a semimartingale. Moreover, by the It\^o product rule and since B\varphi is of finite variation and
continuous,

(2.6) dC\varphi 
t = B\varphi 

t dZt + Zt - dB\varphi 
t = B\varphi 

t - Zt - dXt + \langle ut - , A\ast \varphi \rangle H dt,

which is (2.1). Now, let u be a solution of (2.1) and set

Y :=  - X + [X,X]c + J, J :=
\sum 
s\leq \cdot 

(\Delta Xs)
2

1 + \Delta Xs
,

and Zt := \scrE t(Y ), t \geq 0. Recall that by Lemma 2.4 we have Zt\scrE t(X) = 1 for all t \geq 0.
Set gt := Ztut, and, as above, fix \varphi \in dom(A\ast ) and write B\varphi 

t := \langle utZt, \varphi \rangle H = \langle gt, \varphi \rangle H and
C\varphi 
t := \langle ut, \varphi \rangle H . By It\^o's product rule and Lemma 2.4,

dB\varphi 
t = C\varphi 

t - dZt + Z21t - dC\varphi 
t + d[C\varphi , Z]t

= C\varphi 
t - Zt - dYt + Zt - \langle ut - , A\ast \varphi \rangle H dt+ C\varphi 

t - Zt - dXt + C\varphi 
t - Zt - d[X,Y ]t

= \langle gt - , A\ast \varphi \rangle H dt+B\varphi 
t - ( d[X,X]ct + dJt) - B\varphi 

t - ( d[X,X]ct + dJt)

= \langle gt - , A\ast \varphi \rangle H dt.

Thus, g is a weak solution of (2.2).

Example 2.7. Let A be the generator of a strongly continuous semigroup (St)t\geq 0. Then,
for h0 \in H define

gt := Sth0, t \geq 0,

which is a weak solution of (2.2). By Theorem 2.5.

ut := \scrE t(X)Sth0, t \geq 0,

is a weak solution of (2.1).
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Remark 2.8. If h0 is an eigenfunction of A with eigenvalue \nu , then gt = e\nu th0 is the unique
locally H-integrable solution of (2.2), and the unique solution of (2.1) is given by

ut := h0e
\nu t\scrE t(X).

2.2. Inhomogeneous equations. We keep the assumptions on A, h0, and X from the
previous section and let f \in H. We now consider the inhomogeneous linear evolution equations

dut = [Aut + \alpha f ] dt+ ut - dXt, t \geq 0,

u0 = h0.
(2.7)

Definition 2.9. A weak solution of (2.7) is an adapted H-valued stochastic process u such
that for all \varphi \in dom(A\ast ) the mapping [0,\infty ) \ni t \mapsto \rightarrow \langle ut, \varphi \rangle H is c\`adl\`ag and

\langle ut, \varphi \rangle H  - \langle h0, \varphi \rangle H =

\int t

0
\langle us - , A\ast \varphi \rangle H ds+

\int t

0
\langle us - , \varphi \rangle H dXs + t\alpha \langle f, \varphi \rangle H , t \geq 0,

almost surely.

We exclude the cases \alpha = 0 or f \equiv 0 which correspond to the homogeneous case discussed
above. Let us first consider the case where A admits at least one eigenfunction.

Theorem 2.10. Suppose that f \in dom(A) is an eigenfunction for A with eigenvalue \lambda \in \BbbR ,
and let z0 > 0 and Z be the solution of

(2.8) dZt = (\lambda Zt - + \alpha ) dt+ Zt - dXt, t \geq 0, Z0 = z0.

Then,
(i) the stochastic process defined by ut = Ztf , t \geq 0, is a solution of (2.7) with initial

condition h0 := z0f ;
(ii) let, in addition, h0 \in H be such that there exists a weak solution g = (gt)t\geq 0 of the

deterministic equation

(2.9) \partial 
\partial tgt = Agt, t \geq 0, g0 = h0  - z0f,

and then, ut := gt\scrE t(X) + fZt is a solution of (2.7) with initial condition h0;
(iii) let h0 \in H be such that there exists a weak solution u = (ut)t\geq 0 of (2.7) with initial

condition h0. Then, g := (u - fZ)\scrE (X) - 1 is a weak solution of (2.9).

Remark 2.11. Let (Z1
t )t\geq 0 and (Z2

t )t\geq 0 be given by (2.8) with respective initial data z1,
z2 > 0, z1 \not = z2. Then, in fact Z2

t  - Z1
t = (z2  - z1)\scrE t(X), which is consistent with choosing

different values for z0 in (ii).

Proof. Part (i) follows by direct a computation: Let \varphi \in H; then for t \geq 0,

d \langle ut, \varphi \rangle H = \langle f, \varphi \rangle H dZt(2.10)

= \langle f, \varphi \rangle H (\lambda Zt - + \alpha ) dt+ \langle f, \varphi \rangle H Zt - dXt

= [\langle ut - , A\ast \varphi \rangle H + \alpha \langle f, \phi \rangle H ] dt+ \langle ut - , \phi \rangle H dXt.
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Similarly, we obtain that any solution u of (2.7) with initial data h0 \in H can be written as

u = u\circ ,(h0 - z0f) + u(z0f),

where u\circ ,(h0 - z0f) is the solution of the homogeneous problem (2.1) with initial data h0  - z0f
and u(z0f) is a solution of (2.7) with initial data z0f . Then, part (i) and Theorem 2.5 finish
the proof of (ii) and (iii).

It is then readily verified using It\^o's formula that the unique solution of (2.8) is given by

(2.11) Zt := \scrE t(X)e\lambda t
\biggl( 
Z0 + \alpha 

\int t

0
e - \lambda s\scrE s - (Y ) ds

\biggr) 
, t \geq 0,

where

Yt :=  - Xt + [X,X]ct +
\sum 
s\leq t

\Delta X2
s

1 + \Delta Xs
, t \geq 0.

We now focus on the case X = \sigma W for a real Brownian motion W and a constant \sigma > 0.
Then, we will consider regular two-dimensional realizations of the form ut = \Phi (t, Yt), where

(a) Y is a diffusion process with state space J \subseteq \BbbR , satisfying

dYt = b(Yt) dt+ a(Yt) dWt,

for measurable functions b, a : J \rightarrow \BbbR , where J has nonempty interior, a(y) > 0 for all
y \in J , and 1/a is locally integrable on J ;

(b) \Phi : [0,\infty )\times J \rightarrow dom(A) such that for all \varphi \in dom(A\ast ), the maps defined by \Phi \varphi (t, y) :=
\langle \Phi (t, y), \varphi \rangle , t \geq 0, y \in J , are in C1,2(\BbbR \geq 0 \times J ;\BbbR ).

Examples of such regular two-dimensional realizations are given by Theorem 2.10(i).

Theorem 2.12. Let Xt = \sigma Wt, t \geq 0, for \sigma > 0 and a real Brownian motion W , and assume
that (2.7) admits a regular finite-dimensional realization ut = \Phi (t, Yt), t \geq 0. Then f is an
eigenfunction of A for some eigenvalue \lambda \in \BbbR , and there exists an invertible transformation
h : J \rightarrow \BbbR + such that for t \geq 0, almost surely

Zt = h(Yt), ut = \Phi (t, h - 1(Zt)) = fZt,

where Z is given by (2.8).

Proof. Let \varphi \in dom(A\ast ), and

(2.12) \Phi \varphi (t, Yt) := \langle \Phi (t, Yt), \varphi \rangle .

An application of the It\^o formula yields

d\langle ut, \varphi \rangle = d\Phi \varphi (t, Yt)(2.13)

=

\biggl( 
\partial t\Phi 

\varphi (t, Yt) + \partial yb(Yt)\Phi 
\varphi (t, Yt) +

1

2
a2(Yt)\partial yy\Phi 

\varphi (t, Yt)

\biggr) 
dt

+ a(Yt)\partial y\Phi 
\varphi (t, Yt)dWt.
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Comparing the martingale term with (2.7), we see that \Phi \varphi satisfies the ODE

\partial y\Phi 
\varphi (t, Yt) =

\sigma \Phi \varphi (t, Yt)

a(Yt)
,

dt\otimes d\BbbP -a. e., and hence \Phi \varphi must be of the form

\Phi \varphi (t, y) = g\varphi (t)h(y) = g\varphi (t) exp

\biggl( \int y

y0

\sigma d\eta 

a(\eta )

\biggr) 
, t \geq 0, y \in J,

for some g\varphi \in C1(\BbbR \geq 0) and y0 in the interior of J . The regularity property of the represen-
tation guarantees that h is well-defined and strictly monotone increasing. We stress that h is
in fact independent of \varphi \in dom(A\ast ). Setting Zt = h(Yt), we see that Z satisfies

dZt = m(Zt)dt+ \sigma ZtdWt

for the drift function m = (bh\prime ) \circ h - 1 + 1
2(a

2h\prime \prime ) \circ h - 1.
Note that for each t \geq 0, the mapping \varphi \mapsto \rightarrow g\varphi (t) is linear continuous from dom(A\ast ) \subset H

into \BbbR . Since dom(A\ast ) \subset H is dense, by the Riesz representation theorem for each t \geq 0 there
exists g(t) \in H such that

(2.14) \langle g(t), \varphi \rangle = g\varphi (t).

Since \Phi \varphi (t, y) = g\varphi (t)h(y), g\varphi is differentiable and (2.13) becomes, for \varphi \in dom(A\ast ),

d \langle ut, \varphi \rangle = (Zt\partial tg
\varphi (t) + g\varphi (t)m(Zt)) dt+ g\varphi (t)ZtdWt.

Comparing the drift terms with (2.7) yields for t \geq 0, \varphi \in dom(A\ast ), and z \in h(J),

(2.15) z (\langle g(t), A\ast \varphi \rangle  - \partial tg
\varphi (t)) + \alpha \langle f, \varphi \rangle = m(z)g\varphi (t).

Evaluating at two different points z0, z1 \in h(J) and subtracting we obtain that

(\langle g(t), A\ast \varphi \rangle  - \partial t \langle g(t), \varphi \rangle ) \cdot (z1  - z0) = \langle g(t), \varphi \rangle \cdot (m(z1) - m(z0))

for all t \in \BbbR \geq 0, \varphi \in dom(A\ast ), and z0, z1 \in h(J). We conclude that there exists a constant
\lambda \in \BbbR such that
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\langle g(t), A\ast \varphi \rangle  - \partial t \langle g(t), \varphi \rangle = \lambda \langle g(t), \varphi \rangle (2.16)

and

m(z1) - m(z0) = \lambda (z1  - z0).(2.17)

Thus m must be of the form m(z) = \lambda z+ c for c := m(0). Inserting into (2.15) we obtain that

\alpha \langle f, \varphi \rangle = c \langle g(t), \varphi \rangle \forall \varphi \in dom(A\ast ).

Since dom(A\ast ) \subset H is dense the equation holds for all \varphi \in H. Due to the assumption that
\alpha \not = 0 and f is nonzero, also c \not = 0 and we get g(t) = \alpha 

c f . In particular, g(t) is independent
of t and (2.16) yields

\langle f,A\ast \varphi \rangle =
\bigl\langle 
\lambda c
\alpha f, \varphi 

\bigr\rangle 
\forall \varphi \in dom(A\ast ).

This means that f \in dom(A\ast \ast ). Since A = A\ast \ast (see, e.g., Yosida (1995, Theorem VII.2.3)),
we have f \in dom(A) and

\langle f,A\ast \varphi \rangle = \langle Af, \varphi \rangle = \lambda \langle f, \varphi \rangle \forall \varphi \in dom(A\ast ).

By density of dom(A\ast ) in H this yields that Af = \lambda f , i.e., f must be an eigenfunction of A
with eigenvalue \lambda .

Putting everything together, we have shown that ut =
\alpha 
c fZt where

dZt = (\lambda Zt + c) dt+ \sigma ZtdWt.

Rescaling Z by \alpha 
c concludes the proof.

2.3. Linear SDEs and Pearson diffusions. Let again Xt = \sigma Wt for some \sigma > 0 and a
real Brownian motion W . The factor processes Z appearing above are then special cases of
the linear SDE

(2.18) dZt = (aZt + c)dt+ (bZt + d)dWt, t \geq 0, Z0 = z0,

studied, e.g., in Kloeden and Platen (1992, Chapter 4) or Kallenberg (2002, Proposition 21.2).
Well-known special cases are the geometric Brownian motion (c = d = 0) and the Ornstein--
Uhlenbeck process (b = 0). Relevant in our context is the less common case d = 0, on which
we focus now. Using (2.11), the solution is given by

(2.19) Zt = Xt

\biggl( 
Z0 + c

\int t

0
X - 1

s ds

\biggr) 
, t \geq 0,

where

(2.20) Xt = exp

\biggl( \biggl( 
a - b2

2

\biggr) 
t+ bWt

\biggr) 
, t \geq 0.

Solutions of (2.18) have also been studied in the context of reciprocal gamma diffusions (see,
e.g., Case 4 in Forman and S{\e}rensen (2008)) or also Pearson diffusions. These are generaliza-
tions of (2.18) that allow for a square-root term in the diffusion coefficient.
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Proposition 2.13. Assume that z0 > 0, a < 0, and c > 0. Then, Z has unique invariant
distribution \varpi , which is an inverse Gamma distribution with shape parameter 1 - 2a

b2
and scale

parameter b2

2c and, for any bounded measurable function \phi : (0,\infty ) \rightarrow \BbbR ,

lim
t\rightarrow \infty 

\BbbE [\phi (Zt)] = lim
t\rightarrow \infty 

1

t

\int t

0
\phi (Zs) ds =

\int \infty 

0
\phi (x)\varpi ( dx).

Proof. First, note that

s\prime (x) := x - 2 a
b2 e2

c
b2x , m( dx) := x2(

a
b2

 - 1)e - 2 c
b2x dx, x \in (0,\infty ),

define a scale density and speed measure for Z. Then, one can easily verify that Z is strictly
positive and recurrent on (0,\infty ); see, e.g., Karatzas and Shreve (1987, Proposition 5.5.22).
Moreover, m((0,\infty )) < \infty and so the unique invariant distribution of Z is

(2.21) \varpi (A) :=
m(A)

m((0,\infty ))
.

The remaining results then follow from, e.g., Borodin and Salminen (2012, II.35) or Revuz
and Yor (1999, X.3.12).

\mu (t) := \BbbE Zt, t \geq 0, satisfies the ODE

\partial 
\partial t\mu (t) = a\mu (t) + c, t > 0, \mu (0) = Z0.

Thus,

(2.22) \mu (t) =
\Bigl( 
Z0 +

c

a

\Bigr) 
eat  - c

a
.

Remark 2.14. Let a < 0, c > 0, and (Zt) be the stationary solution of

dZt = (aZt + c) dt+ bZt dWt,

that is, Z0 is chosen distributed according to inverse gamma distribution with shape parameter
1  - 2a

b2
and scale parameter b2

2c . Then, as shown in Bibby, Skovgaard, and S{\e}rensen (2005),
the autocorrelation function of (Zt) is given by

(2.23) r(t) := Corr(Zs+t, Zs) = eat, s, t \geq 0.

To study price dynamics it is also useful to examine the reciprocal process Y = 1/Z.
When d = 0, Y = 1/Z is the unique solution of

(2.24) dYt =  - Yt(a - b2 + cYt) dt - bYt dWt, Y0 = z - 1
0 .

In particular, with X given in (2.20),

(2.25) Yt = \scrE t( - bW.  - a(.))

\biggl( 
Z0 + c

\int t

0
X - 1

s ds

\biggr)  - 1

, t \geq 0.

When a < b2, (2.24) is called the stochastic logistic equation.
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2.4. Positivity, stationarity, and martingale property. Let us first come back to the lin-
ear homogeneous situation. On average, market makers do not accumulate inventory, which
suggests considering the baseline case of balanced order flow for which X is a (local) martin-
gale. If X is a local martingale with \Delta X >  - 1 a.s., then, from the properties of stochastic
exponentials, we obtain that

 \triangleleft  \triangleleft  \triangleleft the weak solution ut of the homogeneous equation (2.1) is a local martingale if and
only if the initial condition h0 is A-harmonic: h0 \in dom(A) and Ah0 = 0;

 \triangleleft  \triangleleft  \triangleleft if \scrE (M) is a martingale and Ah0 = 0, then (ut)t\geq 0 is a martingale.
In the Brownian motion case, from the discussion in the previous section we directly obtain

the following.

Corollary 2.15. Let X = \sigma W where W is a standard Brownian motion and \sigma > 0, and let
u be the solution of the inhomogeneous equation (2.7), where f is an eigenfunction of A with
eigenvalue  - \nu and h0 = z0f , for some z0 > 0. If \nu > 0 and \alpha > 0, then

ut
t\rightarrow \infty \Rightarrow fZ\infty ,

where Z\infty has an inverse Gamma distribution with shape parameter 1+2 \nu 
\sigma 2 and scale param-

eter \sigma 2

2\alpha .

Remark 2.16. The inverse Gamma distribution has a Pareto (right) tail with tail index
1 + 2\nu in this case: the kth moment of \BbbE (Zk

\infty ) < \infty if and only if k < 1 + 2\nu .

So far, we have set aside the positivity constraint for u. By Theorem 2.5 this reduces to
analysis of the deterministic equation. In the case of second-order elliptic operators, positivity
results from the comparison principle, whenever the initial condition h0 is positive.

Assumption 2.17. Let I \subset \BbbR be an interval and suppose that A is a uniformly elliptic
operator of the form

Au(x) = \eta (x)\Delta u(x) + \beta (x)\nabla u(x) + \alpha (x)u(x), x \in I,

with Dirichlet boundary conditions, and where \eta , \beta , and \alpha are smooth and bounded coeffi-
cients, and in particular \eta (x) \geq \eta > 0 for all x \in I.

In addition, the principal eigenvalue of A, \lambda 1 has an eigenfunction f which is positive on
I (Evans, 2010, section 6.5). Note that the factor process Zt has state space (0,\infty ). We thus
obtain the following corollary.

Corollary 2.18 (positivity). Under Assumption 2.17,
(i) if h0 is positive on I, then the solution gt of (2.2) and the solution ut of (2.1) are a.s.

positive on I;
(ii) if f is the principal eigenfunction of A, then the finite-dimensional realization ut = fZt

of (2.7) is a.s. positive on I.

This simple result thus guarantees the existence of a solution with the correct sign, thereby
avoiding recourse to ``reflected"" solutions as in Hambly, Kalsi, and Newbury (2020) and con-
siderably simplifying the analysis of our model.
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3. A two-factor model. We now study the simplest example of model satisfying Assump-
tion 2.17, namely the case of constant coefficients \eta a, \eta b, \sigma a, \sigma b > 0, \beta a, \beta b \geq 0, \alpha a, \alpha b \in \BbbR ,

dut(x) = [\eta a\Delta ut(x) + \beta a\nabla ut(x) + \alpha aut(x)] dt+ \sigma aut(x) dW
a
t , x \in (0, L),

dut(x) = [\eta b\Delta ut(x) - \beta b\nabla ut(x) + \alpha but(x)] dt+ \sigma but(x) dW
b
t , x \in ( - L, 0),

ut(x) = 0, x \in \{  - L, 0, L\} , u0 \in L2( - L,L),

(3.1)

together with the sign condition

(3.2) ut(x) \leq 0, x \in ( - L, 0), and ut(x) \geq 0, x \in (0, L), t \geq 0.

In the following, we will write ub0 := u0| [ - L,0] and ua0 := u0| [0,L].

3.1. Spectral representation of solutions. A spectral representation of the operator may
be used to obtain an analytical solution to this model.

Proposition 3.1. Let I = ( - L, 0) or I = (0, L) and \eta > 0, \beta , \alpha \in \BbbR , and consider the
linear operator

(3.3) A := \eta \Delta + \beta \nabla + \alpha Id

on L2(I) with dom(A) :=
\bigl\{ 
u \in H2(I)| u| \partial I = 0

\bigr\} 
= H2(I) \cap H1

0 (I). The eigenvalues of  - A
are real and given by

(3.4) \nu k =  - \alpha +
\eta k2\pi 2

L2
+

\beta 2

4\eta 
, k = 1, 2, . . . ,

with corresponding eigenfunctions

hk(x) := e
 - \beta 

2\eta 
x
sin
\bigl( 
k\pi 
L x
\bigr) 
, x \in I.

In particular the only positive eigenfunction is h1.

Proof. First we note that \phi is an eigenfunction of A with eigenvalue \nu if and only if

x \mapsto \rightarrow e
\beta 
2\eta 

x
\phi (x)

is an eigenfunction of A0 := \eta \Delta +\alpha Id with zero Dirichlet boundary conditions for eigenvalue

\nu + \beta 2

4\eta . Details of calculations are given in Cont (2005). The operator A0 with domain
dom(A0) := dom(A) is self-adjoint and has compact resolvent (Cont, 2005) and eigenvalues

(3.5) \alpha  - \eta k2\pi 2

L2
, k \in \BbbN .

Eigenfunctions of A0 with eigenvalue \nu \in \BbbR are solutions of the Sturm--Liouville problem

(3.6) \eta g\prime \prime (x) + (\alpha  - \nu )g(x) = 0, x \in I,
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with zero boundary conditions, which yields that g must be of the form

(3.7) g(x) = ce - \gamma 1x sin(\gamma 2x), where \gamma 1 = 0, \gamma 2 =
\nu  - \alpha 

\eta 
.

The zero boundary conditions at 0 and \pm L imply \gamma 2 =
k
L\pi for some k \in \BbbN so

(3.8) \nu = \alpha  - \eta k2\pi 2

L2
.

Translating this from A0 to A yields the result.

Define the bilinear forms

(3.9) L2( - L, 0)\times L2( - L, 0) \ni (f, g) \mapsto \rightarrow \langle f, g\rangle  - \gamma :=
2

L

\int 0

 - L
f(x)g(x)e - 2\gamma x dx

and

(3.10) L2(0, L)\times L2(0, L) \ni (f, g) \mapsto \rightarrow \langle f, g\rangle \gamma :=
2

L

\int L

0
f(x)g(x)e2\gamma x dx

which define equivalent inner products, respectively, for L2( - L, 0) and L2(0, L). For \gamma > 0,
and k \in \BbbN , define

\nu ak :=  - \alpha a+
\eta ak

2\pi 2

L2
+

\beta 2
a

4\eta a
, \nu bk :=  - \alpha b +

\eta bk
2\pi 2

L2
+

\beta 2
b

4\eta b
,(3.11)

hak(x) := e
 - \beta a
2\eta a

x
sin

\biggl( 
k\pi 

L
x

\biggr) 
, x \in (0, L),(3.12)

hbk(x) := e
\beta b
2\eta b

x
sin

\biggl( 
k\pi 

L
x

\biggr) 
, x \in ( - L, 0).(3.13)

Let

(3.14) \gamma a :=
\beta a
2\eta a

, \gamma b :=
\beta b
2\eta b

.

Then (hbk)k\in \BbbN is an orthonormal basis of (L2( - L, 0), \langle \cdot , \cdot \rangle  - \gamma b
) and (hak)k\in \BbbN is an orthonormal

basis for (L2(0, L), \langle \cdot , \cdot \rangle \gamma a) and solutions for the SPDE may be constructed using an expansion
along these bases.

Proposition 3.2. Let u0 \in L2( - L,L), ua0 := u0| [0,L], ub0 := u0| [ - L,0]. Then (ut)t\geq 0 defined
by

(3.15) ut(x) :=

\left\{     
\scrE t(\sigma bW b)

\sum \infty 
k=1 e

 - \nu bkt
\bigl\langle 
ub0, h

b
k

\bigr\rangle 
 - \gamma b

hbk(x), x \in ( - L, 0),

\scrE t(\sigma aW a)
\sum \infty 

k=1 e
 - \nu ak t \langle ua0, hak\rangle \gamma a h

a
k(x), x \in (0, L),

0, x \in \{  - L, 0, L\} .

is the unique continuous weak solution of (3.1) in the sense of Definition 2.2.
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Proof. The unique continuous solutions of the respective deterministic equations are given
by (Sb

tu
b
0)t\geq 0 and (Sa

t u
a
0)t\geq 0, where (S

b
t )t\geq 0 and (Sa

t )t\geq 0 are the Dirichlet semigroups generated
by

(3.16) Ab = \eta b\Delta ut  - \beta b\nabla + \alpha b and Aa = \eta a\Delta + \beta a\nabla + \alpha a

on ( - L, 0) and (0, L), respectively. Thus, from Theorem 2.5 we get

(3.17) ut(x) =

\Biggl\{ 
\scrE t(\sigma bW b)Sb

tu
b
0(x), x \in ( - L, 0),

\scrE t(\sigma aW a)Sa
t u

a
0(x), x \in (0, L).

(Sa
t ) and (Sb

t ) are linear continuous so that for each ha \in L2(0, L), hb \in L2( - L, 0),

Sa
t h

a =
\sum 
k\in \BbbN 

\langle ua0, hak\rangle \gamma a S
a
t h

b
k, and Sb

th
b =

\sum 
k\in \BbbN 

\Bigl\langle 
ub0, h

b
k

\Bigr\rangle 
 - \gamma b

Sb
th

b
k.

By Proposition 3.1 hak (resp., hbk) are eigenfunctions of Aa (resp., Ab) and thus also of Sa

(resp., Sb). This yields the desired representation, where the series converge in L2. To
obtain pointwise convergence, we note that for x \in [0, L] and t > 0, by the Cauchy--Schwarz
inequality, Parseval's identity, and the integral criterion for sequences, for  \star \in \{ a, b\} ,

\infty \sum 
k=1

\bigm| \bigm| \bigm| \bigm| e - \nu  \star kt
\bigl\langle 
u0| (0,L), h \star k

\bigr\rangle 
\beta  \star 
\eta  \star 

h \star k(x)

\bigm| \bigm| \bigm| \bigm| \leq \bigm\| \bigm\| h| (0,L)\bigm\| \bigm\| L2(0,L)

\sqrt{}    \infty \sum 
k=1

e - 2\nu  \star kt

\leq 
\bigm\| \bigm\| u0| (0,L)\bigm\| \bigm\| 2L2(0,L)

e
t(\alpha  \star  - 

\beta 2 \star 
4\eta  \star 

)

\sqrt{} \int \infty 

0
e - 2t \eta  \star \pi 

2

L2 y2 dy.

When \eta > 0, then the weights e - \nu kt of the spectral decomposition decay exponentially
in k2 for large k. This justifies approximating the solution by the first few terms. Note
also that the only positive eigenfunctions are the principal eigenfunctions ha1 and  - h1b so the
sign constraints (3.2) only if the projection of the solution along the principal eigenfunctions
dominates the other terms in the expansion. This motivates us to focus on solutions which live
in the first eigenspace. This occurs if the initial condition is a (positive) linear combination of
ha1 and hb1. We will later show that this assumption is supported by market data. This leads
to a finite-dimensional realization which satisfies the sign constraints (3.2).

Corollary 3.3. Let V a
0 > 0, respectively, V b

0 > 0, and define

(3.18) Ha
1 (x) =

ha1(x)1(0,L)(x)\int L
0 | ha1| 

\geq 0 and Hb
1(x) =

hb1(x)1( - L,0)(x)\int 0
 - L | hb1| 

\leq 0.

The unique solution of (3.1)--(3.2) with initial condition u0 = V a
0 H

a
1 + V b

0H
b
1 is given by

(3.19) ut(x) = Hb
1(x)V

b
t +Ha

1 (x)V
a
t , t \geq 0, x \in [ - L,L], where

\nu a =  - \alpha a +
\eta a\pi 

2

L2
+

(\beta a)
2

4\eta a
, \nu b =  - \alpha b +

\eta b\pi 
2

L2
+

(\beta b)
2

4\eta b
and(3.20)D

ow
nl

oa
de

d 
06

/1
9/

21
 to

 8
4.

67
.2

2.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

766 RAMA CONT AND MARVIN S. M\"ULLER

dV a
t =  - \nu aV a

t dt+ \sigma aV
a
t dW a

t , dV b
t =  - \nu bV b

t dt+ \sigma bV
b
t dW b

t .(3.21)

In particular, ut| [ - L,0] \leq 0, ut| [0,L] \geq 0 and

\nabla ut(0+) =
\pi 

L
V a
t , \nabla ut(0 - ) =

\pi 

L
V b
t .

The L1 normalization (3.18) allows us to interpret the variables in terms of order book

volume and depth:
\int L
0 | ut| = V a

t (resp.,
\int 0
 - L | ut| = V b

t ) represents the volume of sell (resp.,

buy) orders, while \nabla ut(0+)\theta = \theta \pi 
L V a

t (resp., \nabla ut(0 - ).\theta = \theta \pi 
L V b

t ) represents the depth at
the top of the book. In this simple two-factor model, these two are proportional to each
other: they may be decoupled by considering multifactor specifications involving higher-order
eigenfunctions.

The drift parameter  - \nu a (resp.,  - \nu b) thus represents the net growth rate of decrease of
the volume of sell (resp., buy) orders. As shown in (3.20), this net growth rate results from
the superposition of several effects:

 \triangleleft  \triangleleft  \triangleleft submission/cancellation of limit sell (resp., buy) orders by directional sellers (resp.,
buyers) at rate \alpha a (resp., \alpha b); this may be interpreted as the ``low-frequency"" compo-
nent of the order flow;

 \triangleleft  \triangleleft  \triangleleft replacement of limit orders by new ones closer to the mid-price, at rate \beta 2
a

4\eta a

(resp.,
\beta 2
b

4\eta b
);

 \triangleleft  \triangleleft  \triangleleft cancellation of limit orders as the mid-price moves away (i.e., at distance \pm L from the

mid-price) at rate \eta a\pi 2

L2 (resp., \eta b\pi 
2

L2 ).
In the case of a balanced order flow for which there is no systematic accumulation or depletion
of limit orders away from the mid-price, these terms compensate each other and the volume
of limit orders in any interval [St + x1, St + x2] is a (local) martingale. The following result
follows from the remarks in section 2.4.

Corollary 3.4 (balanced order flow). The order book density u is a local martingale (in L2)
if and only if

u0(x) = V b
0H

b
1(x)1( - L,0)(x) + V a

0 H
a
1 (x)1(0,L)(x)

for some V b
0 \geq 0, V a

0 \geq 0 and

(3.22) \alpha a =
\eta a\pi 

2

L2
+

\beta 2
a

4\eta s
, \alpha b =

\eta b\pi 
2

L2
+

\beta 2
b

4\eta b
.

Remark 3.5 (balance between high- and low-frequency order flow). The balance condition
(3.22) expresses a balance between the slow arrival of directional orders, represented by the
terms \alpha a and \alpha b, and the fast replacement of orders inside the book, represented by the terms
\beta 2
a

4\eta b
and \beta 2

a
4\eta b

, and finally the cancellation of limit orders deep inside the book, at rate \eta a\pi 
2/L2.

This balance between order flow at various frequencies may be seen as a mathematical
counterpart of the observations made by Kirilenko et al. (2017) on the nature of intraday
order flow.
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SPDE MODELS FOR LIMIT ORDER BOOK DYNAMICS 767

3.2. Shape of the order book. An implication of the above results is that the average
profile of the order book is given, up to a constant, by the principal eigenfunctions Ha

1 , H
b
1:

(3.23) \BbbE (ut(x)) = \BbbE (V b
t ) H

b
1(x) + \BbbE (V a

t ) H
a
1 (x).

Dropping the indices a, b, the normalized profile of the order book has the form

H1(x) := c1e
 - \beta 

2\eta 
x
sin( \pi Lx), x \in [0, L],

where c1 is such that
\int L
0 | H1| = 1:

1

c1
=

\int L

0
e
 - \beta 

2\eta 
x
sin( \pi Lx) dx =

4\pi L\eta 2

L2\beta 2 + \pi 24\eta 2

\Bigl( 
e
 - \beta 

2\eta 
L
+ 1
\Bigr) 
.

Figure 3 shows this function for different values of \beta : H1 has a unique maximum at

(3.24) \^x :=
L

\pi 
arctan

\Bigl( 
2\eta \pi 
L\beta 

\Bigr) 
.

The position of the maximum moves closer to the origin as \beta /\eta is increased. For \beta = 0 we
have \^x = L

2 , and, on the other hand \^x \searrow 0 as \beta /\eta \rightarrow \infty . Typically, the order book profile for
liquid large tick securities a few ticks from the mid-price. Figure 4 shows the average order
book profile for QQQ; similar results were found in Bouchaud, Farmer, and Lillo (2009) and
Cont, Stoikov, and Talreja (2010). This suggests \^x is of the order of a few ticks, so we are
interested in the parameter range for which \beta /\eta is large.

The value at the maximum is

(3.25) max
x\in [0,L]

H1(x) =

\sqrt{} 
\beta 2

4\eta 2
+

\pi 2

L2
exp

\biggl( 
 - \beta L

2\eta \pi 
arctan

\biggl( 
2\eta \pi 

L\beta 

\biggr) \biggr) \Bigl( 
e
 - \beta L

2\eta + 1
\Bigr)  - 1

.

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h
(x

)/
||h
|| L

1

Figure 3. Shape of the normalized principal eigenfunction H1, which corresponds to the average profile of
the normalized order book, for L := 3\pi , \eta := 1, and different values of \beta \in \{ 0, 0.5, . . . , 3.5\} .
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768 RAMA CONT AND MARVIN S. M\"ULLER

which grows linearly as \beta /2\eta \rightarrow \infty , as shown in Figure 3, where we have plotted h, normalized
by its L1-norm, for various values of \beta with L := 3\pi and \eta = 1.

The above results are valuable for calibrating the model parameters \beta 
2\eta , \alpha , and \sigma to

reproduce the average profile (for each side) of the order book.
\beta 
2\eta can be estimated from the position \^x of the maximum using (3.24). Note that when L

is large, then

\^x \approx 2\eta 

\beta 
.

The height of this maximum gives a further constraint on parameters, using (3.25).
We will use this result for parameter estimation in section 3.6.

3.3. Dynamics of order book volume. As noted in Corollary 3.3, V a
t and V b

t may be
identified as the volume of sell (resp., buy) limit orders: they follow (correlated) geometric
Brownian motions:

V a
t =

\int L

0
| ut(x)| dx = V a

0 exp

\biggl( 
\sigma aW

a
t  - \nu at - 

\sigma 2
at

2

\biggr) 
,

V b
t =

\int 0

 - L
| ut(x)| dx = V b

0 exp

\biggl( 
\sigma bW

b
t  - \nu bt - 

\sigma 2
b t

2

\biggr) 
,

where [W a,W b]t = \rho a,bt. The average volume of the order book Vt = V a
t + V b

t satisfies

\BbbE (Vt) = V0  - 
\int t

0
V 0
a \nu ae

 - \nu as  - V 0
b \nu be

 - \nu bs ds = V0 + V 0
a e

 - \nu at + V 0
b e

 - \nu bt.

Intraday studies of order book volume show it to be stable away from the open and close.
Here \BbbE Vt = Va + Vb if and only if V is a martingale, i.e., \nu a = \nu b = 0.

3.4. Dynamics of price and market depth. Recall from the discussion in section 1.3 that
the order book dynamics yield the price process

dSt = \theta 

\biggl( 
dDb

t

Db
t

 - dDa
t

Da
t

\biggr) 
,

where \theta is an impact coefficient and Db
t and Da

t represent the depth at the top of the order
book (Cont, Kukanov, and Stoikov, 2014):

(3.26) Da
t :=

\int \delta 

0
ut(x) dx \approx 1

2
\delta 2\nabla ut(0+), Db

t :=

\int 0

 - \delta 
| ut(x)| dx \approx 1

2
\delta 2\nabla ut(0 - ).

Using the results in Corollary 3.3, we obtain the following price dynamics:

(3.27) dSt = \theta 

\biggl( 
dV b

t

V b
t

 - dV a
t

V a
t

\biggr) 
,

where

(3.28) dV b
t =  - \nu bV

b
t dt+ \sigma bV

b
t dW b

t , dV a
t =  - \nu aV

a
t dt+ \sigma aV

a
t dW a

t .
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The price dynamics can thus be written as

St = S0  - \theta t (\nu b  - \nu a) + \theta \sigma bW
b
t  - \theta \sigma aW

a
t

= S0  - \theta t (\nu b  - \nu a) + \sigma SBt,

where B is a Brownian motion and \sigma S is the mid-price volatility, which may be expressed in
terms of parameters describing the order flow:

(3.29) \sigma S := \theta 
\sqrt{} 
\sigma 2
b + \sigma 2

a  - 2\sigma a\sigma b\varrho a,b.

The implied price dynamics thus corresponds to the Bachelier model:
 \triangleleft  \triangleleft  \triangleleft The drift term \nu a  - \nu b depends only on the rate of relative increase of the bid/ask

depth, not the actual depths Db
t and Da

t .
 \triangleleft  \triangleleft  \triangleleft The quadratic variation of the mid-price is \sigma 2

St decreases with the correlation between
the buy and sell order flow. This correlation, generated by market makers, reduces
price volatility.

Remark 3.6. Replacing \sigma aW
a and \sigma bW

b by arbitrary semimartingales Xa and Xb with
jumps bounded from below by  - 1 yields the following price dynamics:

(3.30) St = S0  - \theta t (\nu b  - \nu a) + \theta (Xb
t  - Xa

t ).

In particular, this relation links price jumps to large changes (``jumps"") in order flow imbal-
ance:

(3.31) \Delta St = \theta \Delta (Xb
t  - Xa

t ).

3.5. Absolute price coordinates: Stochastic moving boundary problem. The model
above describes dynamics of the order book in relative price coordinates, i.e., as a function of
the (scaled) distance x from the mid-price. The density of the limit order book parameterized
by the (absolute) price level p \in \BbbR is given (in the case of linear scaling) by

(3.32) vt(p) = ut(p - St), x \in \BbbR ,

where we extend ut to \BbbR by setting ut(y) = 0 for y \in \BbbR \setminus [ - L,L]. As observed in section 3.4,
the mid-price dynamics is given by

(3.33) dSt =  - \theta (\nu b  - \nu a) dt+ \theta \sigma b dW
b
t  - \theta \sigma a dW a

t .

The dynamics of v may then be described, via an application of the It\^o--Wentzell formula, as
the solution of a stochastic moving boundary problem (Mueller, 2018).

Theorem 3.7 (stochastic moving boundary problem). The order book density vt(p), as a
function of the price level p is a solution, in the sense of distributions, of the stochastic
moving boundary problem

dvt(p) =
\bigl[ 
(\eta a +

1
2\sigma 

2
s)\Delta vt(p)(3.34)

+ (\nu b  - \nu a + \beta a  - \theta (\varrho a,b\sigma b\sigma a  - \sigma 2
a)\nabla vt(p) + \alpha avt(p)

\bigr] 
dt

+ (\sigma avt(p) + \theta \sigma a\nabla vt(p)) dW
a
t  - \theta \sigma b\nabla vt(p) dW

b
t ,
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770 RAMA CONT AND MARVIN S. M\"ULLER

for p \in (St, St + L), and

dvt(p) =
\bigl[ 
(\eta b +

1
2\sigma 

2
s)\Delta vt(p)(3.35)

+ (\nu b  - \nu a  - \beta b  - \theta (\sigma 2
b  - \varrho a,b\sigma b\sigma a))\nabla vt(x) + \alpha bvt(p)

\bigr] 
dt

+ \theta \sigma a\nabla vt(p) dW
a
t + (\sigma bvt(p) - \theta \sigma b\nabla vt(p)) dW

b
t

for x \in (St  - L, St) with the moving boundary conditions

(3.36) vt(St) = 0, vt(y) = 0, \forall y \in \BbbR \setminus (St  - L, St + L),

in the following sense: (vt)t\geq 0 is a continuous L2(\BbbR )-valued stochastic process and for all
\varphi \in C\infty 

0 (\BbbR ) and t \geq 0,

\langle vt, \varphi \rangle  - \langle v0, \varphi \rangle =
\int t

0
\langle m(x - St,\Delta vr,\nabla vr, vr), \varphi \rangle dr(3.37)

+
1

2

\int t

0
(\nabla vr(Sr - ) - \nabla vr(Sr+))\varphi (Sr) - \nabla vr(Sr  - L+)\varphi (Sr  - L)

+\nabla vr(Sr + L - )\varphi (Sr + L)) d\langle S\rangle r

+

\int t

0
\langle 1(S,Sr+L)\sigma avr, \varphi \rangle dW a

r +

\int t

0
\langle 1(Sr - L,Sr)\sigma bvr, \varphi \rangle dW

b
r

+ \theta \sigma a

\int t

0
\langle \nabla vr, \varphi \rangle dW a

r  - \theta \sigma b

\int t

0
\langle \nabla vr, \varphi \rangle dW b

r ,

where we denote, for S \in \BbbR , V \in H1
0 (( - L,L) \setminus \{ 0\} ) \cap H2(( - L,L) \setminus \{ 0\} ),

m(x, y\prime \prime , y\prime , y) =

\left\{               

(\eta a +
1
2\sigma 

2
s)y

\prime \prime 

+(\nu b  - \nu a + \beta a  - \theta (\varrho a,b\sigma b\sigma a  - \sigma 2
a))y

\prime + \alpha ay, x \in (0, L),

(\eta b + \theta \sigma 2
s)y

\prime \prime 

+(\nu b  - \nu a  - \beta b  - \theta (\sigma 2
b  - \varrho a,b\sigma b\sigma a)))y

\prime + \alpha by, x \in ( - L, 0),

0 else,

for x, y\prime \prime , y\prime , y \in \BbbR .
Remark 3.8. Note that (3.36) is a stochastic boundary condition at St.

The proof, given in Appendix A, is based on Krylov's extended It\^o--Wentzell formula
(Krylov, 2011, Theorem 1.1).

3.6. Parameter estimation. We now describe a method for estimating model parameters.
We use time series of order books for NASDAQ stocks and ETFs from the LOBSTER database.

Given that we do not observe separately the various components of the order flow as in
(3.1), we use the relations discussed in section 3.2 to calibrate the parameters \sigma , \nu and the
shape parameter

(3.38) \gamma :=
\beta 

2\eta 

for each side of the order book. We set L to the largest value in our data set (L := 1000).
Parameters may be calibrated either
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Figure 4. Average profile of QQQ order book (first 20 levels), November 17, 2016 (top: bid; bottom: ask).

(a) through a least squares fit of (3.23) to the average order book profile, or
(b) to reproduce the position \^x and height of the maximum of the order book profile.

Remark 3.9. The estimator based on the maximum position of the peak is fast in compu-
tation but the fixed price level grid in the data restricts the set possible values for estimation
of \gamma . In particular, the estimator is sensitive to the location of the maximum (i.e., the mode
of the order book profile).

We show results for a set of NASDAQ stocks and ETFs. Figure 4 shows how the model
reproduces the average book profile for QQQ at NASDAQ on November 17, 2017. In Figure 5
we see the coefficient \gamma estimated across various 30-min windows during the trading day. The
one-factor model based on the principal eigenfunction yields a reasonable approximation for
the average order book profile, which justifies our assumptions on the dynamics in section 1.2.

For low-price/large tick stocks, the average order book profiles may differ from the
exponential-sine shape. For such stocks, we use the nonlinear scaling described in section 1.1,
leading to an average order book profile:

(3.39) U(p) = V exp( - \gamma ((p - St)/\delta )
a) sin (((p - St)/\delta )

a\pi /L)),

where St is the best price. Figure 6 shows such a nonlinear fit for the average order book
profile of SIRI.

4. Mean-reverting models.

4.1. A class of models with mean reversion. We now return to the full model (1.2) with
nonzero source terms fa(x), f b(x) representing the rate of arrival of new limit orders at a
distance x from the best price:
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772 RAMA CONT AND MARVIN S. M\"ULLER

Figure 5. Values of parameter \gamma a, \gamma b estimated from 30 min. average profile of QQQ order book (first 20
levels), November 17, 2016.

Figure 6. Average profile of SIRI order book, first 20 levels, November 17, 2016 (top: bid; bottom: ask),
\gamma b = 0.95, \gamma a = 0.86, ab = 0.52, aa = 0.56.

dut(x) = [\eta a\Delta ut(x) + \beta a\nabla ut(x) + \alpha aut(x) + fa(x)] dt+ \sigma aut(x) dW
a
t , x \in (0, L),

dut(x) =
\Bigl[ 
\eta b\Delta ut(x) - \beta b\nabla ut(x) + \alpha but(x) + f b(x)

\Bigr] 
dt+ \sigma but(x) dW

b
t , x \in ( - L, 0),

ut(0+) = ut(0 - ) = 0, ut( - L) = ut(L) = 0, t > 0,
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with the sign condition

ut(x) \leq 0, x \in ( - L, 0), and ut(x) \geq 0, x \in (0, L), t \geq 0,

where, as above \eta a, \eta b, \sigma a, \sigma b > 0, \beta a, \beta b \geq 0, \alpha a, \alpha b \in \BbbR are constants and u0 \in L2(( - L,L)).
As above, we denote ub0 := u0| [ - L,0] and ua0 := u0| [0,L]. We will show that, when \alpha a and

\alpha b are negative and fa(x) > 0, f b( - x) < 0 for all x \in (0, L), this class of models leads
to mean-reverting dynamics for the order book profile, consistent with the observation that
intraday dynamics of order book volume and queue size over intermediate time scales (hours,
day) typically exhibit mean reversion rather than a trend.

Projecting the equation on the eigenfunctions hak, h
b
k, as in section 3, we see that, due to

the fast increase in the eigenvalues (3.4), solutions starting from a generic initial condition
may be approximated by their projection on the principal eigenfunctions ha1, h

b
1 (we will justify

this below in Proposition 4.2) and the main contribution of heterogeneous order arrivals arises
from the projection of fa (resp., f b) on ha1 (resp., hb1).

This motivates the following specfication, which leads to a tractable class of models:

(4.1) fa(x) := \=Va Ha
1 (x), f b(x) := \=Vb H

b
1(x),

\=Va > 0, \=Vb > 0.

Theorem 2.10 then gives explicit solutions to (1.2). Recall the notation (3.10) and (3.9) and
define V b

t and V a
t by

(4.2) dV a
t =

\bigl( 
\=Va  - \nu aV

a
t

\bigr) 
dt+ \sigma aV

a
t dW a

t , dV
b
t =

\Bigl( 
\=Vb  - \nu bV

b
t

\Bigr) 
dt+ \sigma bV

b
t dW b

t ,

where \nu i :=
\eta i\pi 

2

L2 +
\beta 2
i

4\eta i
 - \alpha i, i \in \{ a, b\} . The solution of the SPDE may then be obtained as

follows.

Proposition 4.1. (i) The unique L2-continuous solution of (1.2)--(4.1) for a general initial
condition u0 is given by

ut(x) =

\left\{         
V b
t H

b
1(x) + \scrE t(\sigma bW b)

\sum \infty 
k=1 e

 - \nu bkt
\bigl\langle 
ub0  - V b

0H
b
1, h

b
k

\bigr\rangle 
( - \beta b

2\eta b
)
hbk(x), x \in ( - L, 0),

V a
t H

a
1 (x) + \scrE t(\sigma aW a)

\sum \infty 
k=1 e

 - \nu ak t \langle ua0  - V a
0 H

a
1 , h

a
k\rangle \beta a

2\eta a

hak(x), x \in (0, L),

0, x /\in ( - L, 0) \cup (0, L).

(ii) For an initial condition of the form

u0(x) = V a
0 H

a
1 (x)1[0,L] + V b

0H
b
1(x)1[ - L,0]

the unique L2-continuous solution of (1.2)--(4.1) is given by

(4.3) ut(x) =
\Bigl( 
V a
t H

a
1 (x)1(0,L)(x) + V b

t H
b
1(x)1( - L,0)(x)

\Bigr) 
, x \in [ - L,L].

Proof. We obtain the general solution of the linear homogeneous equation from Propo-
sition 3.2. The series representation of u results from the spectral decomposition, Proposi-
tion 3.1, and Theorem 2.10.
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4.2. Long time asymptotics and stationary solutions. In order to derive properties of
the 'average' order book profile, we now examine whether the order book profile ut has an
ergodic behavior and describe stationary solutions. The following result describes the long-
term dynamics and shows that this dynamics is well approximated by projecting the initial
condition on the principal eigenfunctions as done in (4.3):

Proposition 4.2. Let ut be the unique solution of (1.2)--(4.1) for a general initial condition
u0 \in L2( - L,L) and define

(4.4) \v ut(x) := V b
t H

b
1(x)1( - L,0)(x) + V a

t H
a
1 (x)1(0,L)(x), t > 0.

If \nu b1 > 0 and \nu a1 > 0, then we have as follows:
(i) The long-term dynamics of the order book is well approximated by the dynamics (4.4)

projected along the principal eigenfunctions:

(4.5) \BbbP 
\Bigl( 
lim
t\rightarrow \infty 

\| ut  - \v ut\| \infty = 0
\Bigr) 
= 1.

(ii) ut has a unique stationary distribution and

(4.6) ut(x) =\Rightarrow 
t\rightarrow \infty 

f b(x)Zb, x < 0, ut(x) =\Rightarrow 
t\rightarrow \infty 

fa(x)Za, x > 0,

where fa, f b are given by (4.1) and Za (resp., Zb ) is an inverse Gamma random

variable with shape parameter 1+2 \nu a
\sigma 2
a
(resp., 1+2 \nu b

\sigma 2
b
) and scale parameter \sigma 2

a

2 \=Va
(resp.,

\sigma 2
b

2 \=Vb
).

(iii) If furthermore \nu b1 >
\sigma 2
b
2 and \nu a1 > \sigma 2

a
2 , then

(4.7) lim
t\rightarrow \infty 

\BbbE 
\Bigl[ 
\| ut  - \v ut\| 2L2( - L,L)

\Bigr] 
= 0.

Proof. For t0 > 0, let

Kt0 :=

\sqrt{}    \infty \sum 
k=1

e - 2(\nu ak - \nu a1 )t0 < \infty .

Denote u\circ t (.;h) the unique solution of the linear homogeneous equation (3.1) for an initial
condition h. Recall from Theorem 2.10 that

ut(x) - \v ut(x) = u\circ t (x;u0  - \v u0).

It suffices now to prove the results for the ask side and note that the calculations will be
analogous for the bid side. Using the representation of u\circ t from Proposition 3.2 we get for all
t > t0 and all h \in L2(0, L),

\bigm\| \bigm\| u\circ t (.;h)| (0,L)\bigm\| \bigm\| \infty \leq e - \nu a1 t\scrE t(\sigma aW a)

\sqrt{}    \infty \sum 
k=1

e - 2(\nu ak - \nu a1 )t0

\sqrt{}    \infty \sum 
k=1

\bigm| \bigm| \bigm| \bigm| \bigl\langle h, hak\bigr\rangle \beta a
2\eta a

\bigm| \bigm| \bigm| \bigm| 2
= Kt0 \| h\| \beta a

2\eta a

exp
\Bigl( 
\sigma aW

a
t  - 

\Bigl( 
\nu a1 + \sigma 2

a
2

\Bigr) 
t
\Bigr) 
,

which, as t \rightarrow \infty , converges to 0 provided that \nu a1 > 0. This proves (i).
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To show (iii), a similar calculation but using the orthogonality of the decomposition in
Proposition 3.2 yields

\BbbE 
\biggl[ \bigm\| \bigm\| u\circ t (.;h)| (0,L)\bigm\| \bigm\| 2\beta a

2\eta a

\biggr] 
=

\infty \sum 
k=1

e - 2\nu ak t

\bigm| \bigm| \bigm| \bigm| \langle h, hak\rangle \beta a
2\eta a

\bigm| \bigm| \bigm| \bigm| 2 \BbbE \Bigl[ | \scrE t(\sigma aW a)| 2
\Bigr] 

\leq e - 2\nu a1 t \| h\| 2\beta a
2\eta a

\BbbE 
\bigl[ 
exp

\bigl( 
2\sigma aW

a
t  - \sigma 2

at
\bigr) \bigr] 

= e( - 2\nu a1+\sigma 2
a)t \| h\| 2\beta a

2\eta a

.

If \sigma 2
a < 2\nu a1 , then this converges to 0 as t \rightarrow \infty . Since \| .\| \beta a

2\eta a

defines an equivalent norm on

L2(0, L), this finishes the proof of (iii).
Assertion (ii) follows from Proposition 2.13. Indeed, recall that V i, i \in \{ a, b\} , are ergodic

processes whose unique invariant distribution is given by an inverse Gamma distribution with

shape parameter 1+ 2\nu i
\sigma 2
i
and scale parameters

\sigma 2
i

( \=Vi)2
, i \in \{ a, b\} . Denote by Zb and Za random

variables with these distribution For any x \in [ - L,L], we have the convergence in distribution

(4.8) \v ut| ( - L,0) =\Rightarrow Zb f b
1(.), \v ut| (0,L) =\Rightarrow Za fa(.).

Since almost sure convergence yields convergence in distribution, by part (i) this yields
that (4.8) holds also for ut with arbitrary initial data u0 \in L2( - L,L).

4.3. Dynamics of order book volume. Consider now the ``projected"" dynamics as in the
setting of Proposition 4.1(ii). The dynamics of the order book volume Vt is then given by

(4.9) Vt :=

\int L

 - L
| ut(x)| dx = V b

t + V a
t , t \geq 0,

where V b and V a, defined in (4.2), represent the volume of buy (resp., sell) orders in the order
book.

Since [W a,W b]t = \varrho a,bt we can write

W a =: W, W b := \varrho a,bW +
\sqrt{} 
1 - \varrho 2a,b

\widehat W
for some Brownian motion \widehat W , independent of W . Then,

dVt = (\=Va + \=Vb  - (\nu aV
a
t + \nu bV

b
t ) dt(4.10)

+
\Bigl( 
\sigma aV

a
t + \varrho a,b\sigma bV

b
t

\Bigr) 
dWt +

\sqrt{} 
1 - \varrho 2a,b\sigma bV

b
t d\widehat Wt.

In particular, the quadratic variation (``realized variance"") of the order book volume is given
by

(4.11) d\langle V \rangle t =
\Bigl( 
\sigma 2
a(V

a
t )

2 + 2\varrho a,b\sigma b\sigma aV
a
t V

b
t + \sigma 2

b (V
b
t )

2
\Bigr) 
dt.

For the symmetric and perfectly correlated case, V is itself a reciprocal gamma diffusion.
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Corollary 4.3. Assume the setting of Proposition 4.1(ii) and, in addition, that \nu a = \nu b =: \nu ,
\sigma a = \sigma b =: \sigma , and \varrho a,b = 1. Then, V is the unique solution of

(4.12) dVt =
\bigl( 
( \=Vb + \=Va) - \nu Vt

\bigr) 
dt+ \sigma Vt dWt

with V0 = V b
0 + V a

0 .

In all cases, we get from (2.22) that for i \in \{ a, b\} , t \geq 0,

(4.13) \BbbE V i
t =

\biggl( 
V i
0  - \nu i

\=Vi

\biggr) 
e - \nu it +

\nu i
\=Vi

and

(4.14) \BbbE V i
t =

\biggl( 
V b
0  - 

\=Vb

\nu b

\biggr) 
e - \nu bt +

\biggl( 
V a
0  - 

\=Va

\nu a

\biggr) 
e - \nu at +

\=Vb

\nu b
+

\=Va

\nu a
.

4.4. Joint dynamics of mid-price and market depth. We now consider the mid-price and
market depths dynamics in the situation of Proposition 4.1(ii). As discussed in sections 1.3
and 3.4 for the linear homogeneous models, the dynamics of the mid-price is given by

dSt = \theta 

\biggl( 
dDb

t

Db
t

 - dDa
t

Da
t

\biggr) 
,

where \theta is an impact coefficient, while the bid/ask depths follow

Da
t :=

\int \delta 

0
ut(x) dx \approx 1

2
\delta 2\nabla ut(0+) =

\pi 

2L
\delta 2V a

t ,

Db
t :=  - 

\int 0

 - \delta 
ut(x) dx \approx 1

2
\delta 2\nabla ut(0 - ) =

\pi 

2L
\delta 2V a

t .

Thus, the dynamics of the market depths are given by

dDb
t = \nu b

\Bigl( 
Db  - Db

t

\Bigr) 
dt+ \sigma bD

b
t dW b

t ,

dDa
t = \nu a

\bigl( 
Da  - Da

t

\bigr) 
dt+ \sigma aD

a
t dW a

t

for some mean reversion levels Db, Da > 0. We thus obtain the joint dynamics of price and
market depth:

d

\left(  Db
t

Da
t

St

\right)  =

\left(   \nu b(Db  - Db
t )

\nu a(Da  - Da
t )

\theta 
\Bigl( 
\nu bDb

Db
t

 - \nu aDa
Da

t
 - (\nu b  - \nu a)

\Bigr) 
\right)   dt(4.15)

+

\left(    
\sigma bD

b
t 0

\varrho a,b\sigma aD
a
t

\sqrt{} 
1 - \varrho 2a,b\sigma aD

a
t

\theta (\sigma b  - \varrho a,b\sigma a)  - \theta 
\sqrt{} 
1 - \varrho 2a,b\sigma a

\right)    d

\biggl( 
W 1

t

W 2
t

\biggr) 
,
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SPDE MODELS FOR LIMIT ORDER BOOK DYNAMICS 777

where W 1 and W 2 are independent Brownian motions. The mid-price itself has quadratic
variation \langle S\rangle t = \sigma 2

St, where

(4.16) \sigma S := \theta 
\sqrt{} 

\sigma 2
b + \sigma 2

a  - 2\sigma a\sigma b\varrho a,b.

Over a small time interval \Delta t,

S\Delta t = S0 + \theta 

\int \Delta t

0

\nu b(Db  - Db
s)

Db
s

 - \nu a(Da  - Da
s )

2Da(s)
ds+ \theta \sigma bW

b
\Delta t  - \theta \sigma aW

a
\Delta t

\approx S0 +\Delta t
\theta 

2

\biggl( 
\nu b(Db  - Db

0)

Db
0

 - \nu a(Da  - Da
0)

Da
0

\biggr) 
+ \sigma S

\surd 
\Delta t N0,1,

where N0,1 is a standard Gaussian variable. In particular the conditional probability of an
upward mid-price move of size y is given by

(4.17) \BbbP [S\Delta t \geq S0 + y] \simeq N

\Biggl( 
\theta 
\surd 
\Delta t

\sigma S

\biggl( 
\nu b(Db  - Db

0)

Db
0

 - \nu a(Da  - Da
0)

Da
0

\biggr) 
 - y

\sigma S
\surd 
\Delta t

\Biggr) 
,

where N denotes the cumulative distribution function of the standard normal distribution.

Remark 4.4. Using (2.22), the expected order flow over a small time interval [0, t] on each
side of the book is given by for  \star \in \{ a, b\} ,

(4.18) \BbbE [D \star 
t  - D \star 

0] = t\nu  \star (D \star  - D \star 
0) + o(t).

Remark 4.5 (mean-reverting order book imbalance). The imbalance between buy and sell
depth is a frequently used indicator for predicting short term price moves (Cartea, Donnelly,
and Jaimungal, 2018; Cont and de Larrard, 2013; Lipton, Pesavento, and Sotiropoulos, 2014).
In this model, the depth imbalance has the following dynamics:

d(Db
t  - Da

t ) =
\Bigl( 
\nu bD

b  - \nu aD
a  - (\nu bDb

t  - \nu aDa
t )
\Bigr) 
dt+ \sigma bD

b
t dW b

t  - \sigma aD
a
t dW a

t .

In the symmetric case, when D = Da = Db, \nu = \nu a = \nu b, (4.17) becomes

N

\Biggl( 
\nu D\theta 

\surd 
t

\sigma S

\bigl( 
Da

0  - Db
0

\bigr) 
Da

0D
b
0

 - y

\sigma S
\surd 
t

\Biggr) 
.(4.19)

This quantity is decreasing in the depth imbalance Db
0 - Da

0 : this is a consequence of the mean
reversion in order book depth. In the symmetric case

(4.20) d(Db
t  - Da

t ) =  - \nu 
\Bigl( 
Db

t  - Da
t )
\Bigr) 
dt+ \sigma bD

b
t dW b

t  - \sigma aD
a
t dW a

t ,

so the model reproduces the empirical observation that order book imbalance is mean reverting
(Cartea, Donnelly, and Jaimungal, 2018).

Note that the model predicts mean reversion of market depths on the scale of 1/\nu which
corresponds to seconds for the ETFs QQQ and SPY and around 10 seconds for large tick
stocks such as MSFT and INTC (see Table 1). For time scales smaller than 1/\nu , the direction
of price moves is highly correlated with order flow imbalance, as shown in empirical studies
of equity markets (Cont, Kukanov, and Stoikov, 2014).
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4.5. Parameter estimation. We now discuss estimation of model parameters from a dis-
crete set of observations (V a

n , V
b
n )n=0,...,N of the bid/ask volumes V a

t , V
b
t on a uniform time

grid \{ k\Delta t : k = 0, . . . , N\} . Let us rewrite the dynamics of V a
t and V b

t in the form of reciprocal
Gamma diffusions:

(4.21) dV  \star 
t = \nu  \star 

\bigl( 
D \star  - V  \star 

0

\bigr) 
+

\sqrt{} 
2
\nu  \star 
c \star 

(V  \star 
t )

2 dW  \star 
t , t \geq 0, V  \star 

0 \in (0,\infty ),  \star \in \{ a, b\} 

with \nu  \star , D \star , c \star > 0. We use method of moments estimators as in Leonenko and \v Suvak
(2010) for D \star and c \star and a martingale estimation function (Bibby and S{\e}rensen, 1995) for
the autocorrelation parameters \nu  \star ,  \star \in \{ a, b\} : we define

\widehat D \star :=
1

N

N\sum 
k=1

\^Vk and \^c \star :=

\sum N
n=1(

\^Vn)
2\sum N

n=1(
\^Vn)2  - 

\widehat 
D

2
 \star 

= 1 +
\widehat D \star 

2

\sum N
n=1 | \^Vn| 2  - \widehat D \star 

2 .

Combining Proposition 2.13 and Remark 2.16 with Theorem 6.3 of Leonenko and \v Suvak (2010)
we obtain that if D \star > 0 and c \star > 5, then V  \star has finite fourth moment and the estimators
are consistent and asymptotically normal.

For the autocorrelation parameters \nu a and \nu b we use the martingale estimation function
(Bibby and S{\e}rensen, 1995, section 2)

(4.22) G \star (\nu ;D, c) :=
c

\nu 

N\sum 
n=1

(D \star  - \^V  \star 
n - 1)

( \^Vn - 1)2

\Bigl( 
\^Vn  - F ( \^Vn - 1; \nu ,D)

\Bigr) 
,

where

(4.23) F (z; \nu ,D) := (z  - D)e - \nu \Delta t +D.

Given D \star , this yields the estimators

(4.24) \^\nu  \star :=
1

\Delta t
log

\left(    - 

\sum N
n=1

(D \star  - \^Vn - 1)2

( \^Vn - 1)2\sum N
n=1

(D \star  - \^Vn - 1)

( \^Vn - 1)2
(Vn  - D \star )

\right)   ,  \star \in \{ a, b\} .

Convergence of this estimator is discussed in Bibby and S{\e}rensen (1995, Theorem 3.2).
We apply these estimators to high-frequency limit order book time series for NASDAQ

stocks and ETFs, obtained from the LOBSTER database, arranged into equally spaced ob-
servations over time intervals of size \Delta t = 10ms and dt = 50ms. For each observation we use
as market depth the average volume of order in the first two price levels, respectively on bid
and ask sides.3 Below we show sample results for ETFs (SPY and QQQ) and liquid stocks
(MSFT and INTC).

Table 1 shows estimated parameter values across different days for INTC, MSFT, QQQ,
and SPY. We observe negative values of correlation \varrho a,b across bid and ask order flows, which
is consistent with observations in Carmona and Webster (2019).

3The source code for the implementation is available online (Cont and Mueller, 2018).
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Table 1
Averaged estimators for model parameters; \nu and \sigma are given per second.

Ticker Date \mu b \mu a \nu b \nu a \sigma b \sigma a \varrho a,b

INTC 2016-11-15 5179.0 5641.7 0.151 0.156 0.133 0.134 -0.077
2016-11-16 5565.0 5672.5 0.082 0.118 0.111 0.124 -0.070
2016-11-17 5776.5 7363.2 0.144 0.109 0.118 0.116 -0.019

MSFT 2016-11-15 3035.6 3855.9 0.522 0.426 0.292 0.292 -0.092
2016-11-16 2839.9 3562.1 0.409 0.395 0.239 0.240 -0.071
2016-11-17 4149.0 5762.5 0.300 0.239 0.202 0.208 -0.146

QQQ 2016-11-15 4686.9 5489.2 2.467 1.972 0.724 0.639 -0.177
2016-11-16 4801.0 5142.6 2.041 1.845 0.632 0.677 -0.177
2016-11-17 6414.0 6226.4 1.428 1.281 0.510 0.506 -0.224

SPY 2016-11-15 3903.4 4877.9 1.949 1.689 0.737 0.666 -0.176
2016-11-16 3773.4 4486.4 1.324 1.763 0.578 0.657 -0.156
2016-11-17 3693.0 4115.4 1.355 1.405 0.597 0.543 -0.181

Figures 7 and 8 show intraday variation of estimators for \nu a, \nu b, \sigma a, \sigma b, and \varrho a,b computed
over 15-minute windows.

There are various estimators for intraday price volatility in this model, which allow us to
test the model. Recall that in (4.16) we expressed price volatility in terms of the parameters
describing the order flow:

(4.25) \^\sigma S := \theta 
\sqrt{} 
\sigma 2
b + \sigma 2

a  - 2\sigma b\sigma a\varrho a,b,

where \theta is the impact coefficient. We call this the RV estimator.
Another estimator is obtained by first estimating \sigma b and \sigma a using the martingale estimation

function (4.22) then computing the price volatility using (4.25). We label this the RCG
estimator.

Finally, one can compute the realized variance of the price over a 30 minute time window
using price changes over 10 ms intervals. Comparing these different estimators is a qualitative
test of the model.

Figure 9 compares these estimators, computed over 30 minute time windows: we observe
that the model-based estimators are of the same order and closely track the intraday realized
price volatility, which shows that the model captures correctly the qualitative relation between
order flow and volatility.

Appendix A. Dynamics in absolute price coordinates. We now discuss in more detail the
generalized It\^o--Wentzell formula for distribution-valued processes, which is used in section 3.5
to derive the dynamics of the (noncentered) order book density vt(p). Let C\infty 

0 := C\infty 
0 (\BbbR ) be

the space of smooth compactly supported functions on \BbbR , \BbbD its dual, the space of generalized
functions. We denote by \partial 

\partial x and \partial 2

\partial x2 the first two derivatives in the sense of distributions and
by \langle ., .\rangle the duality product on \BbbD \times C\infty 

0 .
A \BbbD -valued stochastic process u = (ut)t\geq 0 on a filtered probability space (\Omega ,\scrF ,\BbbF ,\BbbP ) is

called \BbbF -predictable if for all \phi \in C\infty 
0 (\BbbR ) the real-valued process (\langle ut, \phi \rangle )t\geq 0 is predictable.
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Figure 7. Autocorrelation (\nu a/b), standard deviation (\sigma a/b), and bid-ask correlation (\varrho a,b) of order book
depth in first two levels for two liquid ETFs (QQQ and SPY).
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Figure 8. Autorcorrelation (\nu a/b), standard deviation (\sigma a/b), and bid-ask correlation (\varrho a,b) of order book
depth in first two levels for two liquid stocks (INTC and MSFT).
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Figure 9. Comparison of various estimators for intraday price volatility \sigma S: standard deviation of price
changes (blue), estimator based on realized variance/covariance of bid/ask depth (red), and estimator based on
martingale estimation function (orange).

Let N \in \BbbN and (bt)t\geq 0 and (ckt )t\geq 0, k \in \{ 1, . . . , N\} , be predictable \BbbD -valued processes.
We assume that for all T , R \in (0,\infty ) and all \phi \in C\infty 

0 (\BbbR ), almost surely

(A.1)

\int T

0
sup
| x| \leq R

| \langle bt, \phi (. - x)\rangle | +
N\sum 
k=1

\bigm| \bigm| \bigm| \Bigl\langle ckt , \phi (. - x)
\Bigr\rangle \bigm| \bigm| \bigm| 2 dt < \infty .D
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Let (W k
t , k = 1, . . . , N)t\geq 0 be independent scalar Brownian motions. We consider an

equation of the form

(A.2) dut = bt dt+
N\sum 
k=1

ckt dW k
t .

Definition A.1. A \BbbD -valued stochastic process (ut)t\geq 0 is called a solution of (A.2) in the
sense of distributions with initial condition u0 if for t \in (0,\infty ) and \phi \in C\infty 

0

(A.3) \langle ut, \phi \rangle  - \langle u0, \phi \rangle =
\int t

0
\langle bs, \phi \rangle dt+

N\sum 
k=1

\int t

0

\Bigl\langle 
cks , \phi 

\Bigr\rangle 
dW k

s

holds almost surely.

The following change of variable formula is a special case of a result by Krylov (2011,
Theorem 1.1).

Theorem A.2 (generalized It\^o--Wentzell formula). Let (ut)t\geq 0 be a solution of (A.2) in the
sense of distributions and let (xt)t\geq 0 be a locally integrable process with representation

dxt = \mu t dt+

N\sum 
k=1

\sigma k
t dW k

t , t \geq 0,

where (\mu t)t\geq 0 and (\sigma k
t , k = 1, . . . , N)t\geq 0 are real-valued predictable processes. Define the \BbbD -

valued process (vt)t\geq 0 by vt(x) := ut(x+ xt) for x \in \BbbR , t \in [0,\infty ). Then (vt)t\geq 0 is a solution
of

dvt =

\Biggl[ 
bt(.+ xt) +

1
2

\Biggl( 
N\sum 
k=1

\bigm| \bigm| \bigm| \sigma k
t

\bigm| \bigm| \bigm| 2\Biggr) \partial 2

\partial x2 vt + \mu t
\partial 
\partial xvt +

N\sum 
k=1

\Bigl( 
\sigma k
t

\partial 
\partial xc

k
t (.+ xt)

\Bigr) \Biggr] 
dt

+
N\sum 
k=1

\Bigl[ 
ckt (.+ xt) + \sigma k

t
\partial 
\partial xvt

\Bigr] 
dW k

t

in the sense of distributions.

Remark A.3. It is worth noting that the correlation of (ut) and (xt) contributes the term

N\sum 
k=1

\Bigl( 
\sigma k
t

\partial 
\partial xc

k
t (.+ xt)

\Bigr) 
.

We now apply the above It\^o--Wentzell formula in order to derive the dynamics of the order
book density v, in noncentered coordinates, in the setting considered in sections 3 and 4.

Let L \in (0,\infty ] and I := ( - L, 0) \cup (0, L). For h, f \in H2(I) \cap H1
0 (I). Then, (1.2) with

initial condition u0 = h admits a unique (analytically) strong solution denoted by (ut)t\geq 0. Let
\~ut be the trivial extension of ut to \BbbR , i.e.,

(A.4) \~ut(x) :=

\Biggl\{ 
ut(x), x \in I,

0 otherwise.
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Note that \~u \in H2(\BbbR \setminus \{  - L, 0, L\} ) \cap H1(\BbbR ). Recall that \Delta and \nabla in the previous discussions
denoted the weak derivatives on \BbbR \setminus \{  - L, 0, L\} , and we get that \partial 

\partial x \~u = \nabla \~u and

(A.5)

\partial 2

\partial x2 \~u - \Delta \~u = \partial 
\partial x\nabla \~u - \nabla \nabla \~u

= (\nabla \~u( - L+) - \nabla \~u( - L - ))\delta  - L

+ (\nabla \~u(0+) - \nabla \~u(0 - ))\delta 0 + (\nabla \~u(L+) - \nabla \~u(L - ))\delta L,

where \delta x denotes a point mass at x \in \BbbR . Define

bt(x) :=

\left\{     
\eta a\Delta ut(x) + \beta a\nabla ut(x) + \alpha aut(x) + fa(x), x \in (0, L),

\eta b\Delta ut(x) - \beta b\nabla ut(x) + \alpha but(x) - fb(x), x \in ( - L, 0),

0 otherwise,

(A.6)

c1t (x) :=

\left\{     
\sigma a\varrho a,but(x), x \in (0, L),

\sigma but(x), x \in ( - L, 0),

0 otherwise,

(A.7)

c2t (x) :=

\Biggl\{ 
\sigma a
\sqrt{} 

1 - \varrho 2a,but(x), x \in (0, L),

0 otherwise,
(A.8)

so that

(A.9) d\~ut = bt dt+ c1t dW 1
t + c2t dW 2

t .

The Cauchy--Schwarz inequality shows that (A.1) is satisfied. Assume now that the mid-price
(St)t\geq 0 follows the dynamics

(A.10) dSt = cs\theta \mu t dt+ cs\theta (\sigma b  - \sigma a\varrho a,b) dW
1
t  - cs\theta \sigma a

\sqrt{} 
1 - \varrho 2a,b dW

2
t

for some integrable predictable process \mu . Define

(A.11) \sigma s := cs\theta 
\sqrt{} 

\sigma 2
b + \sigma 2

a  - 2\varrho a,b\sigma b\sigma a.

Then, Theorem A.2 yields that for vt(x) := \~ut(x - St) we get

(A.12)

dvt =
\Bigl[ 
bt(. - St) +

1
2\sigma 

2
s

\partial 2

\partial x2 vt  - cs\theta \mu t
\partial 
\partial xvt

 - 
\Bigl( 
cs\theta (\sigma b  - \varrho a,b\sigma a)

\partial 
\partial xc

1
t (. - St) + cs\theta 

\sqrt{} 
1 - \varrho 2a,b\sigma a

\partial 
\partial xc

2
t (. - St)

\Bigr) \Bigr] 
dt

+
\bigl( 
c1t (. - St) - cs\theta (\sigma b  - \varrho a,b\sigma a)

\partial 
\partial xvt

\bigr) 
dW 1

t

+
\Bigl( 
c2t (. - St) + cs\theta 

\sqrt{} 
1 - \varrho 2a,b\sigma a

\partial 
\partial xvt

\Bigr) 
dW 2

t ,
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i.e., v is a solution of the stochastic moving boundary problem,

(A.13)

dvt =
\bigl[ \bigl( 
\eta a +

1
2\sigma 

2
s

\bigr) 
\Delta vt +

\bigl( 
\beta a  - cs\theta \mu t  - cs\theta 

\bigl( 
\varrho a,b\sigma b\sigma a  - \sigma 2

a

\bigr) \bigr) 
\nabla vt

+ \alpha avt + fa(. - St)
\bigr] 
dt

+ (\sigma a\varrho a,bvt  - cs\theta (\sigma b  - \varrho a,b\sigma a)\nabla vt) dW
1
t

+ \sigma a

\sqrt{} 
1 - \varrho 2a,b (vt + cs\theta \nabla vt) dW

2
t , on (St, St + L),

dvt =
\bigl[ \bigl( 
\eta b +

1
2\sigma 

2
s

\bigr) 
\Delta vt  - 

\bigl( 
\beta b + cs\theta \mu t + cs\theta 

\bigl( 
\sigma 2
b  - \varrho a,b\sigma b\sigma a

\bigr) \bigr) 
\nabla vt

+ \alpha bvt  - fb(. - St)
\bigr] 
dt

+ (\sigma bvt  - cs\theta (\sigma b  - \varrho a,b\sigma a)\nabla vt) dW
1
t

+ cs\theta 
\sqrt{} 
1 - \varrho 2a,b\sigma a\nabla vt dW

2
t on (St  - L, St),

vt = 0 otherwise;

dSt = cs\theta \mu t dt+ cs\theta (\sigma b  - \varrho a,b\sigma a) dW
1
t  - cs\theta 

\sqrt{} 
1 - \varrho 2a,b\sigma a dW 2

t .

To define what we mean by solution in this context we introduce the mappings

\BbbL :
\bigcup 
x\in \BbbR 

\bigl[ \bigl( 
H2(\BbbR \setminus \{ x - L, x, x+ L\} ) \cap H1

0 (\BbbR \setminus \{ x - L, x, x+ L\} )
\bigr) 
\times \{ x\} 

\bigr] 
\rightarrow \BbbD ,

(v, s) \mapsto \rightarrow (\nabla (v(s - L+) - \nabla v(s - L - )))\delta s - L

+ (\nabla (v(s+) - \nabla v(s - )))\delta s

+ (\nabla (v(s+ L+) - \nabla v(s+ L - )))\delta s+L.

Define now the functions \=\mu : \BbbR 5 \rightarrow \BbbR , \=\sigma 1, \=\sigma 2 : \BbbR 4 \rightarrow \BbbR as

\=\mu (x, y\prime \prime , y\prime , y, s) :=

\left\{               

(\eta a +
1
2\sigma 

2
s)y

\prime \prime + (\beta a  - cs\theta (\varrho a,b\sigma b\sigma a  - \sigma 2
a))y

\prime 

+\alpha ay + fa(x), x \in (0, L),

(\eta b +
1
2\sigma 

2
s)y

\prime \prime  - (\beta a + cs\theta (\sigma 
2
b  - \varrho a,b\sigma b\sigma a))y

\prime 

+\alpha by  - fb(x), x \in ( - L, 0),

0 otherwise,

\=\sigma 1(x, y
\prime , y, s) :=

\left\{     
\sigma a\varrho a,by, x \in (0, L),

\sigma by, x \in ( - L, 0),

0 otherwise,

\=\sigma 2(x, y
\prime , y, s) :=

\Biggl\{ 
\sigma a
\sqrt{} 

1 - \varrho 2a,by, x \in (0, L),

0 otherwise

for x, y\prime \prime , y\prime , y, s \in \BbbR .
Following Mueller (2018, Definition 1.11), a solution of (A.13) is an L2(\BbbR )\times \BbbR -continuous

stochastic process (vt, St), taking values in\bigcup 
x\in \BbbR 

\bigl[ \bigl( 
H2(\BbbR \setminus \{ x - L, x, x+ L\} ) \cap H1

0 (\BbbR \setminus \{ x - L, x, x+ L\} )
\bigr) 
\times \{ x\} 

\bigr] 
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such that (St) is given by (A.10) and, in the sense of distributions,

dvt = (\=\mu (. - St,\Delta vt,\nabla vt, vt, St)) dt - \nabla vt dSt +
1
2\BbbL (vt, St) d\langle S\rangle t(A.14)

+ \=\sigma 1(. - St,\nabla vt, vt, St) dW
1
t + \=\sigma 2(. - St,\nabla vt, vt, St) dW

2
t .
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