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13
Network Structure and Systemic Risk in Banking

Systems
Rama Cont, Amal Moussa and Edson B. Santos

Abstract We present a quantitative methodology for analyzing the potential for
contagion and systemic risk in a network of interlinked financial institutions, using
a metric for the systemic importance of institutions: the Contagion Index.

We apply this methodology to a data set of mutual exposures and capital levels
of financial institutions in Brazil in 2007 and 2008, and analyze the role of bal-
ance sheet size and network structure in each institution’s contribution to systemic
risk. Our results emphasize the contribution of heterogeneity in network structure
and concentration of counterparty exposures to a given institution in explaining
its systemic importance. These observations plead for capital requirements which
depend on exposures, rather than aggregate balance sheet size, and which target
systemically important institutions.

Keywords Default risk, domino effects, balance sheet contagion, scale-free net-
work, default contagion, systemic risk, macro-prudential regulation, random graph.

13.1 Introduction

The recent financial crisis has emphasized the importance of systemic risk, defined
as macro-level risk which can impair the stability of the entire financial system.
Bank failures have led in recent years to a disruption of the financial system and
a significant spillover of financial distress to the larger economy (Hellwig, 2009).
Regulators have had great difficulties anticipating the impact of defaults partly due
to a lack of visibility on the structure of the financial system as well as a lack of
a methodology for monitoring systemic risk. The complexity of the contemporary
financial systems makes it a challenge to define adequate indicators of systemic
risk that could help in an objective assessment of the systemic importance of finan-
cial institutions and an objective framework for assessing the efficiency of macro-
prudential policies.

One of the aspects of systemic risk which has been highlighted in the recent crisis
has been the interconnectedness of financial institutions, which increases the prob-
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328 Cont, Moussa and Santos

ability of contagion of financial distress. Such externalities resulting from counter-
party risk are a major concern for regulators (Hellwig, 1995; Haldane, 2009) and
network models (Allen and Gale, 2000; Boss et al., 2004; Cont and Moussa, 2010;
Nier et al., 2007; Amini et al., 2010; Gai and Kapadia, 2010; Amini et al., 2012)
provide an adequate framework for addressing them. Simulation studies based on
network models have been extensively used by central banks for assessing conta-
gion risk in banking systems; we refer to the pioneering work of Elsinger et al.
(2006a) and the survey of Upper (2011).

Following our earlier work (Cont, 2009; Cont and Moussa, 2010) we introduce
and implement a quantitative methodology for analyzing the potential for conta-
gion and systemic risk in a network of interlinked financial institutions, using a
metric for the systemic importance of institutions – the Contagion Index – de-
fined as the expected loss to the network triggered by the default of an institution
in a macroeconomic stress scenario (Cont, 2009). The definition of this indicator
takes into account both common market shocks to portfolios and contagion through
counterparty exposures. Contrarily to indicators of systemic risk purely based on
market data (Acharya et al., 2010; Adrian and Brunnermeier, 2008; Zhou et al.,
2009), our metric is a forward-looking measure of systemic importance is based on
exposures, which represent potential losses in case of default. We build on methods
proposed in Cont and Moussa (2010) for estimating and analyzing this indicator.

We apply this methodology to a unique and complete data set of interbank ex-
posures and capital levels provided by the Brazilian Central Bank, and analyze the
role of balance sheet size and network structure in each institution’s contribution
to systemic risk. Our results emphasize the importance of heterogeneity in net-
work structure and the role of concentration of counterparty exposures in explain-
ing its systemic importance of an institution. These arguments plead for capital
requirements which depend on exposures instead of aggregate balance sheet size
and which target systemically important institutions.

Most of the empirical studies on systemic risk and default contagion in interbank
networks (Sheldon and Maurer, 1998; Furfine, 2003; Upper and Worms, 2004;
Wells, 2004; Elsinger et al., 2006a,b; Mistrulli, 2007) have dismissed the impor-
tance of contagion; however we find that contagion significantly contributes to sys-
temic risk in the Brazilian banking system. Our results do not contradict previous
findings but present them in a different light: while most of the aforementioned
studies use indicators averaged across institutions we argue that, given the hetero-
geneity of the systemic importance across institutions, the sample average gives a
poor representation of the degree of contagion and conditional measures of risk and
should be used. Also, most of these studies are based on a generous recovery rate
assumptions whereby all assets of a defaulting bank are recovered at pre-default
value; this is far from reality, especially in the short term – which we focus on here
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– where recovery rates are close to zero in practice. Finally, with the exception of
Elsinger et al. (2006a,b), all these studies measure the impact of the idiosyncratic
default of a single bank, whereas we use the more realistic setting of stress scenar-
ios where balance sheets are subjected to common shocks. As in previous studies
on other banking systems (Elsinger et al., 2006a,b; Upper, 2011) we find that, while
the probability of contagion is small, the loss resulting from contagion can be very
large in some cases.

Our study reveals several interesting features on the structure of the Brazilian fi-
nancial system and the nature of systemic risk and default contagion in this system:

• Interbank networks exhibit a complex heterogeneous structure, which resembles
a directed scale-free network as defined in Bollobás et al. (2003): the distribu-
tions of number of counterparties and exposure sizes are found to be heavy-
tailed, with an asymmetry between incoming and outgoing links. Furthermore,
while individual exposures are quite variable in time, these statistical regulari-
ties, which encode the large-scale statistical structure of the network are shown
to be stable across time.

• Systemic risk is concentrated on a few nodes in the financial network: while
most financial institutions present only a negligible risk of contagion, a handful
of them generate a significant risk of contagion through their failure.

• Ignoring the compounded effect of correlated market shocks and contagion via
counterparty exposures can lead to a serious underestimation of contagion risk.
Specifically, market shocks are found to increase the proportion of contagious
exposures in the network, i.e. exposures that transmit default in all shock sce-
narios. We are thus led to question the conclusions of previous studies which
dismissed the importance of contagion by looking at pure balance sheet conta-
gion in absence of market shocks.

• Balance sheet size alone is not a good indicator for the systemic importance
of financial institutions: network structure does matter when assessing systemic
importance. Network-based measures of connectivity and concentration of ex-
posures across counterparties – counterparty susceptibility and local network
frailty – are shown to contribute significantly to the systemic importance of an
institution.

• Using the Contagion Index as a metric for systemic impact permits a compar-
ative analysis of various capital allocations across the networks in terms of the
resulting cross-sectional distribution of the Contagion Index. While a floor on
the (aggregate) capital ratio is shown to reduce the systemic impact of defaults
of large institutions, imposing more stringent capital requirements on the most
systemic nodes and on the most concentrated exposures is shown to be a more
efficient procedure for immunizing the network against contagion.
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13.1.1 Contribution

Our approach builds on previous theoretical and empirical studies of default con-
tagion in banking systems (see De Bandt and Hartmann (2000); Upper (2011) for
a review of the literature), but also differs from them both in terms of the method-
ology used and in terms of the results obtained. In particular, we are led to revisit
some of the conclusions in the previous literature on the magnitude of contagion
risk in interbank networks.

Methodology On the methodological side, most previous studies on contagion in
financial networks have mostly focused on the stability of the financial system as a
whole, either in stylized equilibrium settings (Allen and Gale, 2000; Freixas et al.,
2000; Battiston et al., 2009) or in simulation studies of default cascades (Upper and
Worms, 2004; Mistrulli, 2007; Elsinger et al., 2006a,b; Nier et al., 2007). Nier et al.
(2007) measure the average number of defaults when the institutions in the system
are subject one at a time to an idiosyncratic shock which wipes out their external
assets. Upper and Worms (2004) and Mistrulli (2007) consider various aggregate
measures of contagion: the number of institutions that default by contagion and the
loss as a fraction of the total assets in the banking system. Elsinger et al. (2006a)
also measure contagion by counting the number of defaults due to counterparty ex-
posure when the system is subject to correlated market shocks. These studies give
insights on the global level of systemic risk in the entire network, but do not allow
to measure the systemic importance of a given financial institution, which is our
focus here. Rather than compute a global measure of systemic risk then allocating
it to individual institutions as in Tarashev et al. (2010); Zhou et al. (2009); Liu
and Staum (2011), we use a direct metric of systemic importance, the Contagion
Index (Cont, 2009; Cont and Moussa, 2010), which allows to rank institutions in
terms of the risk they pose to the system by quantifying the expected loss in capital
generated by an institutions default in a macroeconomic stress scenario.

Recent studies such as Acharya et al. (2010); Zhou et al. (2009) have also pro-
posed measures of systemic importance based on market data such as CDS spreads
or equity volatility. By contrast to these methods which are based on historical mar-
ket data, our approach is a forward-looking, simulation-based approach based on
interbank exposures (Cont, 2009). Exposure data, which represent potential future
losses, are available to regulators, should be used as an ingredient in evaluating
systemic importance and interconnectedness. As argued in Cont (2009), since ex-
posures are not publicly available, even if market variables correctly reflect pub-
lic information they need not reflect the information contained in exposures, so
exposures-based indicators are a useful complement to market-based indicators.

With the exception of Elsinger et al. (2006a,b), most simulation studies of con-
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13: Network Structure and Systemic Risk in Banking Systems 331

tagion in banking networks examine the sole knock-on effects of the sudden failure
of a single bank by considering an idiosyncratic shock that targets a single insti-
tution in the system. Upper and Worms (2004) estimate the scope of contagion by
letting banks go bankrupt one at a time and measuring the number of banks that
fail due their exposure to the failing bank. Sheldon and Maurer (1998) and Mis-
trulli (2007) also study the consequences of a single idiosyncratic shock affecting
individual banks in the network. Furfine (2003) measures the risk that an exoge-
nous failure of one or a small number of institutions will cause contagion. These
studies fail to quantify the compounded effect of correlated defaults and contagion
through network externalities. Our study, on the contrary, shows that common mar-
ket shocks to balance sheets may exacerbate contagion during a crisis and ignoring
them can lead to an underestimation of the extent of contagion in the network. We
argue that, to measure adequately the systemic impact of the failure of a financial
institution, one needs to account for the combined effect of correlation of market
shocks to balance sheets and balance sheet contagion effects, the former increasing
the impact of the latter. Our simulation-based framework takes into account com-
mon and independent market shocks to balance sheets, as well as counterparty risk
through mutual exposures.

The loss contagion mechanism we consider differs from most network-based
simulations, which consider the framework of Eisenberg and Noe (2001) where a
market clearing equilibrium is defined through a clearing payment vector with pro-
portional sharing of losses among counterparties in case of default (Eisenberg and
Noe, 2001; Elsinger et al., 2006a,b; Müller, 2006). This leads to an endogenous re-
covery rate which corresponds to a hypothetical situation where all bank portfolios
are simultaneously liquidated. This may be an appropriate assumption model for
interbank payment systems, where clearing takes place at the end of each business
day, but is not a reasonable model for the liquidation of defaulted bank portfo-
lios. Our approach is, by contrast, a stress-testing approach where, starting from
the currently observed network structure, capital levels are stressed by macroeco-
nomic shocks and a risk measure computed from the distribution of aggregate loss.
We argue that, since bankruptcy procedures are usually slow and settlements may
take up several months to be effective, creditors cannot recover the residual value
of the defaulting institution according to such a hypothetical clearing mechanism,
and write down their entire exposure in the short-run, leading to a short term re-
covery rate close to zero. In absence of a global default resolution mechanism, this
seems a more reasonable approach.

Studies on simulated network structures have examined the variables that af-
fect the global level of systemic risk in the network (Nier et al., 2007; Battiston
et al., 2009) such as the connectivity, concentration, capital levels, but the main
results (such as the level of contagion and the role of interconnectedness) strongly
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depend on the details of the model and the structure of the network, which have
left open whether these conclusions hold in actual banking networks. On the other
hand, most of the empirical studies have only partial information on the bilateral
exposures in the network, and estimate missing exposures with a maximum en-
tropy method (Sheldon and Maurer, 1998; Upper and Worms, 2004; Wells, 2004;
Elsinger et al., 2006a,b; Degryse and Nguyen, 2007). However, the maximum en-
tropy method is found to underestimate the possibility of default contagion (Mis-
trulli, 2007; van Lelyveld and Liedorp, 2006; Cont and Moussa, 2010). Our study,
by making use of empirical data on all bilateral exposures, avoids this caveat.

Results Our empirical findings on the network structure of the Brazilian finan-
cial system are – qualitatively and quantitatively – similar to statistical features
observed in the Austrian financial system (Boss et al., 2004). This suggests that
these features could be a general characteristic of interbank networks, and it would
interesting to check whether similar properties are also observed in other interbank
networks.

While most of the empirical studies on systemic risk and default contagion in
interbank networks have dismissed the importance of contagion, our study reveals
that the risk of default contagion is significant in the Brazilian financial system. We
show examples in which the expected loss resulting from the default of an insti-
tution can exceed by several multiples the size of its interbank liabilities. In con-
trast with Elsinger et al. (2006a), we find that scenarios with contagion are more
frequent than those without contagion when grouped by number of fundamental
defaults. This difference in results is due to two reasons. First, our metric, the Con-
tagion Index, measures the magnitude of loss conditional to the default of a given
institution, instead of averaging across all defaults as in Elsinger et al. (2006a).
We argue that these conditional measures provide a better assessment of risk in a
heterogeneous system where the sample average may be a poor statistic. Second,
we use a heavy-tailed model for generating the common shocks to balance sheets:
we argue that this heavy-tailed model is more realistic than Gaussian factor models
used in many simulation studies.

We find that macroeconomic shocks play an essential role in amplifying conta-
gion. Specifically, we observe that the proportion of contagious exposures increases
considerably when the system is subject to a market shock scenario, thus creating
additional channels of contagion in the system. The Contagion Index, by com-
pounding the effects of both market events and counterparty exposure, accounts
for this phenomenon.

Our study also complements the existing literature by studying the contribution
of network-based local measures of connectivity and concentration to systemic
risk. Previous studies on simulated network structures have examined the contri-
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bution of aggregate measures of connectivity and concentration such as increasing
the probability that two nodes are connected in an Erdös-Renyi graph, or increas-
ing the number of nodes in the system (Battiston et al., 2009; Nier et al., 2007). We
introduce two measures of local connectivity: counterparty susceptibility, which
measures the susceptibility of the creditors of an institution to a potential default of
the latter, and local network frailty which measures how network fragility increases
when a given node defaults, and argue that these indicators provide good clues for
localizing sources of contagion in the network.

The impact of capital requirements in limiting the extent of systemic risk and de-
fault contagion has not been explored systematically in a network context. Analo-
gies with epidemiology and peer-to-peer networks (Cohen et al., 2003; Madar et al.,
2004; Huang et al., 2007) suggest that, given the heterogeneity of nodes in terms
of systemic impact, targeted capital requirements may be more effective than uni-
form capital ratios. We argue that

• targeting the most contagious institutions is more effective in reducing systemic
risk than increasing capital ratios uniformly across all institutions, and

• capital requirements should not simply focus on the aggregate size of the bal-
ance sheet but depend on their concentration/distribution across counterparties:
a minimal capital-to-exposure ratio allows to reduce channels of contagion in
the network by reducing the number of ‘contagious links’.

13.1.2 Outline

Section 13.2 introduces a network model for a banking system and describes their
structure and statistical properties using empirical data from the Brazilian banking
system. Section 13.3 introduces a quantitative approach for measuring contagion
and systemic risk, following Cont (2009). Section 13.4 applies this methodology
to the Brazilian financial system. Section 13.5 investigates the role of different in-
stitutional and network characteristics which contribute to the systemic importance
of Brazilian financial institutions. Section 13.6 analyzes the impact of capital re-
quirements on these indicators of systemic risk and uses the insights obtained from
the network model to examine the impact of targeted capital requirements which
focus on the most systemic institutions and concentrated exposures.

13.2 The network structure of banking systems

13.2.1 Counterparty Networks

Counterparty relations in financial systems may be represented as a weighted di-
rected graph, or a network, defined as a triplet I = (V,E,c), consisting of
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• a set V of financial institutions, whose number we denote by n,
• a matrix E of bilateral exposures: Ei j represents the exposure of node i to node
j defined as the (mark-to-)market value of all liabilities of institution j to insti-
tution i at the date of computation. It is thus the maximal short term loss of i in
case of an immediate default of j.

• c = (c(i), i ∈ V ) where c(i) is the capital of the institution i, representing its
capacity for absorbing losses.

Such a network may be represented as a graph in which nodes represent institutions
and links represent exposures.

We define the in-degree kin(i) of a node i ∈ V as the number of its debtors and
out-degree kout(i) the number of its creditors:

kin(i) = ∑
j∈V

1{Ei j>0}, kout(i) = ∑
j∈V

1{Eji>0}, (13.1)

The degree k(i) of a node i is defined as k(i) = kin(i)+ kout(i) and measures its
connectivity.

Although all institutions in the network are not banks, we will refer to the expo-
sures as “interbank” exposures for simplicity. We denote A(i) the interbank assets
of financial institution i, and L(i) its interbank liabilities:

A(i) = ∑
j∈V
Ei j, L(i) = ∑

j∈V
E ji, (13.2)

We now give an example of such a network and describe its structure and topology.

13.2.2 A complex heterogeneous network: the Brazilian banking system

The Brazilian financial system encompasses 2400 financial institutions chartered
by the Brazilian Central Bank and grouped into three types of operation: Type I
are banking institutions that have commercial portfolios, Type III are institutions
that are subject to particular regulations, such as credit unions, and Type II repre-
sent all other banking institutions. Despite their reduced number (see Table 13.1),
financial institutions of Type I and II account for the majority (about 98%) of total
assets in the Brazilian financial system (see Table 13.2). We therefore consider in
the Brazilian data set only Type I and Type II financial institutions which is a very
good proxy for the Brazilian financial system. Most of the financial institutions
belong to a conglomerate (75% of all financial institutions of Type I and II). Con-
sequently, it is quite meaningful to analyze the financial system from a consolidated
perspective where financial institutions are classified in groups that are held by the
same shareholders. Only banking activities controlled by the holding company are
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considered in the consolidation procedure. The accounting standards for consolida-
tion of financial statements were established by Resolutions 2,723 and 2,743, BCB
(2000a,b), and they are very similar to IASB and FASB directives. If we regard
financial institutions as conglomerates, the dimension of the exposures matrices
reduces substantially, see Table 13.1 for the number of financial conglomerates in
the Brazilian financial system after the consolidation procedure.

These exposures, reported at six dates (June 2007, December 2007, March 2008,
June 2008, September 2008 and November 2008) cover various sources of risk:

1. fixed-income instruments (certificate of deposits and debentures);
2. borrowing and lending (credit risk);
3. derivatives (including OTC instruments such as swaps);
4. foreign exchange and,
5. instruments linked to exchange-traded equity risk.

Derivatives positions were taken into account at their market prices when available,
or at fair value when a model-based valuation was required.

The data set also gives the Tier I and Tier 2 capital of each institution, computed
according to guidelines provided in Resolution 3,444 BCB (2007a) of the Brazilian
Central Bank, in accordance with the Basel I and II Accords. Tier 1 capital is
composed of shareholder equity plus net income (loss), from which the value of
redeemed preferred stocks, capital and revaluation of fixed assets reserves, deferred
taxes, and non-realized gains (losses), such as mark-to-market adjustments from
securities registered as available-for-sale and hedge accounting are deducted. Tier 2
capital is equal to the sum of redeemed preferred stocks, capital, revaluation of
fixed assets reserves, non-realized gains (losses), and complex or hybrid capital
instruments and subordinated debt. We shall focus on Tier 1 capital as a measure
of a bank’s capacity to absorb losses in the short term.

Financial conglomerates in Brazil are subject to minimum capital requirements.
The required capital is a function of the associated risks regarding each financial
institution’s operations, whether registered in their balance sheets (assets and li-
abilities) or not (off-balance sheet transactions), as defined in Resolution 3,490,
BCB (2007b). The required capital is computed as cr = δ ×Risk Base where the
δ = 11% and the risk base is the sum of credit exposures weighted by their re-
spective risk weights, foreign currency and gold exposures, interest rate exposures,
commodity exposures, equity market exposures, and operational risk exposures. It
is important to highlight that the exposures considered in the computation of the
risk base include not only interbank exposures but also exposures to all counter-
parties.

Table 13.3 presents some descriptive statistics of these variables.
Figure 13.1 illustrates the Brazilian interbank network in December 2007. It is
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Table 13.1 Number of financial institutions by type of operation for the Brazilian financial system. Source: Sisbacen.
Type Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Dec-08

Multiple Bank 135 135 135 136 139 139 140
Commercial Bank 20 20 21 20 20 18 18
Development Bank 4 4 4 4 4 4 4
Savings Bank 1 1 1 1 1 1 1
Investment Bank 17 17 17 18 18 18 17
Consumer Finance Company 51 52 51 56 55 55 55
Security Brokerage Company 113 107 114 107 107 107 107
Exchange Brokerage Company 48 46 48 46 46 45 45
Security Distribution Company 132 135 133 133 136 136 135
Leasing Company 40 38 41 37 36 36 36
Real Estate Credit Company and Savings and Loan Association 18 18 18 18 18 17 16
Mortgage Company 6 6 6 6 6 6 6
Development Agency 12 12 12 12 12 12 12

Total Banking Institutions of Type I and II 597 591 601 594 598 594 592

Credit Union 1.461 1.465 1.460 1.466 1.460 1.457 1.453
Micro-financing Institution 54 52 54 48 46 45 47

Total Banking Institutions Type III 2.112 2.108 2.115 2.108 2.104 2.096 2.092
Non-Banking Institutions 332 329 333 324 317 318 317

Total Banking and Non-Banking Institutions 2444 2.437 2.448 2.432 2.421 2.414 2.409
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Table 13.2 Representativeness of Brazilian financial institutions in terms of total Assets and number. The total assets were
converted from BRL (Brazilian Reals) to USD (American Dollars) with the following foreign exchange rates (BRL/USD):

1.9262 (Jun-07), 1.7713 (Dec-07), 1.7491 (Mar-08), 1.5919 (Jun-08), 1.9143 (Sep-08), and 2.3370 (Dec-08). Source: Sisbacen.

Assets in Billions of USD Jun-07 % Dec-07 % Mar-08 % Jun-08 % Sep-08 % Dec-08 %

Banking - Type I 1,064.8 87.1 1,267.7 87.8 1,366.9 87.9 1,576.0 87.7 1,433.2 88.0 1,233.6 87.5

Banking - Type II 129.6 10.6 142.7 9.9 152.7 9.8 179.4 10.0 160.1 9.8 148.3 10.5

Banking - Type I and II 1,194.5 97.7 1,410.4 97.7 1,519.6 97.7 1,755.4 97.7 1,593.2 97.8 1,382.0 98.0

Banking - Type III 17.7 1.5 21.5 1.5 23.7 1.5 28.3 1.6 24.1 1.5 19.1 1.4

Non-Banking 10.4 0.9 12.8 0.9 12.5 0.8 14.4 0.8 11.4 0.7 9.3 0.7

Total Financial System 1,222.6 100.0 1,444.8 100.0 1,555.8 100.0 1,798.1 100.0 1,628.8 100.0 1,410.4 100.0

Number of Conglomerates Jun-07 % Dec-07 % Mar-08 % Jun-08 % Sep-08 % Dec-08 %

Banking - Type I 102 5.4 101 5.4 101 5.4 101 5.4 103 5.5 101 5.4
Banking - Type II 32 1.7 32 1.7 32 1.7 33 1.8 34 1.8 35 1.9
Banking - Type I and II 134 7.1 133 7.1 133 7.1 134 7.2 137 7.3 136 7.3

Banking - Type III 1,440 76.8 1,440 77.0 1,436 77.0 1,441 77.0 1,442 76.9 1,438 77.0

Non-Banking 302 16.1 298 15.9 297 15.9 296 15.8 296 15.8 294 15.7

Total Financial System 1,876 100.0 1,871 100.0 1,866 100.0 1,871 100.0 1,875 100.0 1,868 100.0
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Table 13.3 Descriptive statistics of the number of debtors (in-degree), number of
creditors (out-degree), exposures, relative exposures (ratio of the exposure of
institution i to institution j to the capital of i), and distance between two

institutions (nodes) in the network.
In-Degree Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

Mean 8.56 8.58 8.75 8.98 8.99 7.88
Standard Deviation 10.84 10.86 10.61 11.15 11.32 11.02

5% quantile 0 0 0 0 0 0
95% quantile 30.50 29.30 30.45 31 32 30.60

Maximum 54 54 51 57 60 62
Out-Degree Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

Mean 8.56 8.58 8.75 8.98 8.99 7.88
Standard Deviation 8.71 8.82 9.02 9.43 9.36 8.76

5% quantile 0 0 0 0 0 0
95% quantile 26 26 27.90 29.25 30.20 27.40

Maximum 36 37 39 41 39 44
Exposures (in billions of BRL) Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

Mean 0.07 0.05 0.05 0.05 0.05 0.08
Standard Deviation 0.77 0.32 0.32 0.30 0.38 0.54

5% quantile 0.00 0.00 0.00 0.00 0.00 0.00
95% quantile 0.20 0.17 0.17 0.18 0.19 0.35

Maximum 23.22 9.89 9.90 9.36 12.50 15.90
Relative Exposures (Ei j/c(i)) Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

Mean 0.23 0.20 0.04 0.04 0.03 0.05
Standard Deviation 1.81 1.62 0.16 0.17 0.06 0.21

5% quantile 0.00 0.00 0.00 0.00 0.00 0.00
95% quantile 0.70 0.59 0.20 0.21 0.16 0.18

Maximum 49.16 46.25 4.57 5.17 0.69 6.02
Distance Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08

Mean 2.42 2.42 2.38 2.38 2.33 2.35
Standard Deviation 0.84 0.85 0.84 0.82 0.77 0.78

5% quantile 1 1 1 1 1 1
95% quantile 4 4 4 4 3 4

Maximum (Diameter) 5 6 6 6 5 6

observed to have a heterogeneous and complex structure, some highly connected
institutions playing the role of “hubs” while others are at the periphery.

Distribution of connectivity
Casual inspection of the graph in Figure 13.1 reveals the existence of nodes with
widely differing connectivity. This observation is confirmed by further analyzing
the data on in-degrees and out-degrees of nodes. Figures 13.2 and 13.3 show, re-
spectively, the double logarithmic plot of the empirical complementary cumulative
distribution for the in-degree P̂(Kin � k) and out-degree P̂(Kout � k) for k � 1. We
notice that the tails of the distributions exhibit a linear decay in log-scale, suggest-
ing a heavy Pareto tail.

This observation is confirmed through semiparametric tail estimates. Maximum
likelihood estimates for the tail exponent α and tail threshold kmin (Clauset et al.,
2009) are shown in Table 13.4 for the in-degree, out-degree and degree distribu-
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Figure 13.1 Brazilian interbank network, December 2007. The number of financial conglom-
erates is n = 125 and the number of links in this representation at any date does not exceed
1200.

tions. Maximum likelihood estimates for α̂ range from 2 to 3. The results are sim-
ilar to the findings of Boss et al. (2004) for the Austrian network.

We test the goodness-of-fit of the power law tails for in-degree, out-degree and
degree via the one-sample Kolmogorov-Smirnov test with respect to a reference
power law distribution. The results in Figures 13.2 and 13.3 provide evidence for
the Pareto tail hypothesis at the 1% significance level.

The precise pattern of exposure across institutions may vary a priori in time: it
is therefore of interest to examine whether the large scale structure of the graph, as
characterized by the cross-sectional distributions of in- and out-degrees, is station-
ary, that is, may be considered as time-independent. Comparing quantiles of the
degree distributions at different dates ( Figure 13.4) shows that the empirical dis-
tribution of the degree, in-degree and out-degree are in fact stable over time, even
though the observations span the turbulent period of 2007-2008. A two-sample
Kolmogorov-Smirnov test for consecutive dates produces p-values greater than 0.6,
suggesting that the null hypothesis of stationarity of the degree distribution cannot
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Figure 13.2 Brazilian interbank network: distribution of in-degree.
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Figure 13.3 Brazilian interbank network: distribution of out-degree.
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Table 13.4 Statistics and maximum likelihood estimates for the distribution of
in/out degree: tail exponent α , tail threshold for in-degree kin,min, out-degree

kout,min, degree kmin, and exposures Emin.
In-Degree Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Mean

α̂ 2.19 2.70 2.20 3.36 2.16 2.13 2.46
σ̂ (α̂) 0.48 0.46 0.47 0.53 0.47 0.44 0.48
k̂in,min 6 13 7 21 6 5 9.7

Out-Degree Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Mean
α̂ 1.98 3.41 3.40 2.91 2.43 2.88 2.83

σ̂ (α̂) 0.63 0.59 0.48 0.43 0.41 0.49 0.51
k̂out,min 5 15 16 12 9 11 11.3
Degree Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Mean
α̂ 2.61 3.37 2.29 2.48 2.27 2.23 2.54

σ̂ (α̂) 0.52 0.47 0.48 0.41 0.43 0.35 0.44
k̂min 17 34 12 15 12 10 16.7

Exposures* Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08 Mean
α̂ 1.97 2.22 2.23 2.37 2.27 2.52 2.27

σ̂ (α̂) 0.02 0.60 0.21 0.69 0.38 0.98 0.48
Êmin 39.5 74.0 80.0 101.7 93.4 336.7 120.9

*values in millions of BRL (Brazilian Reals)

be rejected. These results show that, while individual links continuously appear and
disappear in the network, statistical regularities such as degree distributions which
encode the large-scale statistical topology of the network are stable in time.
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Figure 13.4 Scatterplot of the the empirical cumulative distributions at consecutive dates for the
degree, in-degree and out-degree in the Brazilian interbank network.

Heterogeneity of exposure sizes
The distribution of interbank exposures is also found to be heavy-tailed, with Pareto
tails. Figure 13.5 shows the existence of a linear decay in the tail of the double
logarithmic plot for the empirical distribution of exposure sizes.
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Figure 13.5 Brazilian interbank network: distribution of exposures in BRL.
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344 Cont, Moussa and Santos

Maximum likelihood estimates for the tail exponent α and the tail cutoff kmin for
the distribution of exposures are shown in Table 13.4. Note that an interbank asset
for an institution is an interbank liability for its counterparty, thus, the distribution
of interbank liability sizes is the same. The only difference is how these exposures
are allocated among the financial institutions in the network. Figure 13.5 shows
evidence for Pareto tails in the exposure distributions at all dates.

Most financial institutions in Brazil have sufficient Tier 1 capital to cover their
interbank exposures. However, some institutions have interbank exposures which
total much higher than their Tier 1 capital: these nodes can be very sensitive to
counterparty defaults and, as we will see in Section 13.5.2 they may play a crucial
role in the contagion of losses across the network.

Another interesting observation is that financial institutions which are highly
connected tend to have larger exposures. We investigate the relationship between
the in-degree kin(i) of a node i and its average exposure size A(i)/kin(i) and also
examine the relation between the out-degree kout(i) and the average liability size
L(i)/kout(i) and between k(i) and A(i)/k(i) by computing the Kendall tau for each
of these pairs. Table 13.5 displays the Kendall tau τKendall coefficients that measure
the statistical dependence between the variables, and their respective p-values. The
results show that the in-degree and the average interbank asset size, as well as the
out-degree and the average interbank liability size, show positive dependence.

Table 13.5 Brazilian interbank network: Kendall τKendall coefficients for
in-degree kin vs. interbank assets A, out-degree kout vs. interbank liabilities L, and

degree k vs. exposures w.
kin vs. A/kin Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08
τKendall 0.28 0.25 0.22 0.26 0.24 0.21
(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

kout vs. L/kout Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08
τKendall 0.27 0.28 0.31 0.32 0.34 0.30
(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
k vs. A/k Jun-07 Dec-07 Mar-08 Jun-08 Sep-08 Nov-08
τKendall 0.24 0.24 0.21 0.23 0.23 0.23
(p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Clustering
The clustering coefficient of a node is defined as the ratio of the number of its links
between its neighbors to the total number of possible links among its neighbors
(Watts and Strogatz, 1998): this ratio, between 0 and 1, tells how connected among
themselves the neighbors of a given node are. In complete graphs, all nodes have a

Downloaded from Cambridge Books Online by IP 155.198.190.134 on Wed Jun 15 13:22:36 BST 2016.
http://dx.doi.org/10.1017/CBO9781139151184.018

Cambridge Books Online © Cambridge University Press, 2016



13: Network Structure and Systemic Risk in Banking Systems 345

clustering coefficient of 1 while in regular lattices the clustering coefficient shrinks
to zero with the degree.

A property often discussed in various networks is the small world property
(Watts and Strogatz, 1998) which refers to networks where, although the network
size is large and each node has a small number of direct neighbors, the distance be-
tween any two nodes is very small compared to the network size. Boss et al. (2004)
report that in the Austrian interbank network any two nodes are on average 2 links
apart, and suggest that the Austrian interbank network is a small-world. However,
a small graph diameter is not sufficient to characterize the small world property:
indeed, complete networks have diameter one but are not ”small worlds”. The sig-
nature of a small world network is that, while the diameter is bounded or slowly
increasing with the number of nodes, the degree remains small (or bounded) and
the clustering coefficient of nodes remain bounded away from zero (Cont and Tan-
imura, 2008). In the Brazilian financial system, we observe nodes with an arbitrary
small clustering coefficient across all time periods (Figure 13.6). This absence of
uniform clustering shows that the Brazilian financial system is not a small world
network.

Figure 13.6 shows the relationship between the local clustering coefficient and
number of degrees for the Brazilian interbank network. The negative slope of the
plots shows that financial institutions with few connections (small degree) have
counterparties that are very connected to each other (large clustering) while fi-
nancial institutions with many connections (large degree) have counterparties with
sparsely connected neighbors.

13.3 Systemic risk and default contagion

Once the network structure linking balance sheets has been identified, one is inter-
ested in examining the consequences of the failure of a given node or set of nodes
in the network on the stability of the network and locate the node or nodes whose
failure would pose the highest threat to network stability. We now define two in-
dicators of default contagion and systemic impact for a financial institution – the
Default Impact and the Contagion Index – following Cont (2009). These indicators
aim at quantifying the impact of the default of a given institution in terms of the
(expected) loss it incurs for other institutions in the network, taking into account
both balance sheet contagion and common shocks affecting balance sheets.

13.3.1 Default mechanism

Default occurs when an institution fails to fulfill a legal obligation such as a sched-
uled debt payment of interest or principal, or the inability to service a loan. Typi-
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Figure 13.6 Degree vs. clustering coefficient for the Brazilian interbank network. The grey line is the average clustering coefficient.
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13: Network Structure and Systemic Risk in Banking Systems 347

cally, this happens when the institution does not hold enough liquid assets to meet
its contractual obligations i.e. due to a shortage of liquidity.
Insolvency happens when the net worth of an institution is reduced to zero, i.e.

losses exceed capital, while illiquidity occurs when reserves in liquid assets, such
as cash and cash equivalents, are insufficient to cover short term liabilities. While
illiquidity leads to default, in principle insolvency may not necessarily entail de-
fault as long as the institution is able to obtain financing to meet payment obliga-
tions. Nevertheless, in the current structure of the financial sector where financial
institutions are primarily funded through short-term debt, which must be constantly
renewed, insolvent institutions would have great difficulties in raising liquidity as
their assets lose in value. Indeed, renewal of short term funding is subject to the
solvency and creditworthiness of the institution. In practice, insolvency leads to
illiquidity which in turn leads to default unless, of course, a lender of last resort
such as the central bank intervenes.

Thus, in line with various previous studies, we consider default as generated
by insolvency. In practice, this may be defined as a scenario where losses in asset
value exceed Tier 1 capital. If Tier 1 capital is wiped out, the institution becomes
insolvent which is very likely to generate a loss of short term funding leading to
default. One must bear in mind, however, that other scenarios to default may exist
which may amplify the contagion phenomena described below, so our assessments
should be viewed as a lower bound on the magnitude of contagion.

We recognize that institutions may default due to lack of liquidity even when
just a portion of their Tier 1 capital is wiped out: the example of Bear Stearns is
illustrative in this sense (Cox, 2008). However, given the current funding structure
of financial institutions through short term debt, absent a government bailout, in-
solvency due to market losses which exceed the level of capital will most probably
lead to a loss of funding opportunities and credit lines and entail default. Also, it is
difficult to argue that illiquidity in absence of insolvency will systematically lead to
default: as argued by Lo (2011), uncertainty about bank solvency was more central
than illiquidity in the recent financial crisis.

Thus, our estimates for the extent of default contagion will, if anything, lead to
lower bounds for its actual extent in absence of government intervention.

13.3.2 Loss contagion

When a financial institution (say, i) defaults, it leads to an immediate writedown
in value of all its liabilities to its creditors. These losses are imputed to the capital
of the creditors, leading to a loss of Eji for each creditor j. If this loss exceeds the
creditor’s capital i.e. Eji > c j this leads to the insolvency of the institution j, which
in turn may generate a new round of losses to the creditors of j. This domino effect
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348 Cont, Moussa and Santos

may be modeled by defining a loss cascade, updating at each step the losses to
balance sheets resulting from previously defaulted counterparties:

Definition 13.1 (Loss cascade) Consider an initial configuration of capital re-
serves (c( j), j ∈V ). We define the sequence (ck( j), j ∈V )k≥0 as

c0( j) = c( j) and ck+1( j) = max(c0( j)− ∑
{i,ck(i)=0}

(1−Ri)Eji,0), (13.3)

where Ri is the recovery rate at the default of institution i. (cn−1( j), j ∈V ), where
n= |V | is the number of nodes in the network, then represents the remaining capital
once all counterparty losses have been accounted for. The set of insolvent institu-
tions is then given by

D(c,E) = { j ∈V : cn−1( j) = 0} (13.4)

Remark 13.2 (Fundamental defaults vs defaults by contagion) The set D(c,E)
of defaulted institutions may be partitioned into two subsets

D(c,E) = { j ∈V : c0( j) = 0}︸ ︷︷ ︸
Fundamental defaults

⋃
{ j ∈V : c0( j)> 0, cn−1( j) = 0}︸ ︷︷ ︸

Defaults by contagion

where the first set represents the initial defaults which trigger the cascade – we will
refer to them as fundamental defaults – and the second set represents the defaults
due to contagion.

The default of an institution can therefore propagate to other participants in the
network through the contagion mechanism described above. We measure the im-
pact of the default event triggering the loss cascade by the loss incurred across the
network during the default cascade:

Definition 13.3 (Default Impact) The Default Impact DI(i,c,E) of a financial
institution i∈V is defined as the total loss in capital in the cascade triggered by the
default of i:

DI(i,c,E) = ∑
j∈V
c0( j)− cn−1( j), (13.5)

where (ck( j), j ∈ V )k≥0 is defined by the recurrence relation (13.3), with initial
condition is given by

c0( j) = c( j) for j 
= i and c0(i) = 0.

It is important to note that the Default Impact does not include the loss of the
institution triggering the cascade, but focuses on the loss this initial default inflicts
to the rest of the network: it thus measures the loss due to contagion.

Here we have chosen to measure the impact of a default in terms of loss in
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capital. If one adopts the point of view of deposit insurance, then one can use an
alternative measure, which is the sum of deposits across defaulted institutions:

DI(i,c,E) = ∑
j∈D(c,E)

Deposits( j).

The contagion mechanism described above is similar to the one presented in
Furfine (2003); Upper and Worms (2004); Mistrulli (2007). Since liquidation pro-
cedures are usually slow and settlements may take up to several months to be
effective, creditors cannot recover the residual value of the defaulting institution
according to such a hypothetical clearing mechanism, and write down their entire
exposure in the short-run, leading to a short term recovery rate of zero. In absence
of a clearing mechanism, this approach seems more reasonable than the one pro-
posed by Eisenberg and Noe (2001) which corresponds to a hypothetical situation
where all portfolios are simultaneously liquidated. Eisenberg and Noe (2001) fo-
cused on payment systems, where clearing takes place at the end of each business
day, but is not a reasonable model for the liquidation of defaulted bank portfolios.
Finally, we note that this model does not capture medium- or long-term contagion:
maintaining exposures constant over longer term horizons, as in Elsinger et al.
(2006a) is unrealistic since exposures and capital levels fluctuate significantly over
such horizons.

13.3.3 Contagion Index of a financial institution

The Default Impact of an institution is conditional on the level of capital buffers
held by different institutions and these may in fact decrease in an unfavorable stress
scenario such as an economic downturn which adversely affects bank portfolios.
Losses in asset value resulting from macroeconomic shocks, in addition to gener-
ating correlation in market risk across bank portfolios, also contribute to amplifying
the magnitude of contagion: by depleting the capital buffer of banks, they increase
the impact of a given default event and make the network less resilient to defaults.
This points to the need of integrating both common macroeconomic shocks and
contagion effects when measuring systemic risk in interbank networks, a point that
was already recognized by Elsinger et al. (2006a).

To take into account the impact of macroeconomic shocks, we introduce a (neg-
ative) random variable Z which represents the magnitude of such a common shock.
This variable Z is then scaled to generate a loss of εi (%) in the (Tier 1) capital
of institution i with a severity that depends on the capital and the creditworthiness
of each institution: those with higher default probabilities are more affected by a
macroeconomic shock.

Macroeconomic shocks affect bank portfolios in a highly correlated way, due
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to common exposures of these portfolios. This correlation has been found to be
significantly positive in banking systems across different countries (Lehar, 2005).
Moreover, in market stress scenarios fire sales may actually exacerbate such cor-
relations (Cont and Wagalath, 2011). In many stress-testing exercises conducted
by regulators, the shocks applied to various portfolios are actually scaled version
of the same random variable i.e. perfectly correlated across portfolios. To general-
ize this specification while conserving the idea that macroeconomic shocks should
affect portfolios in the same direction, we considering a co-monotonic model for
macroeconomic shocks (Cont, 2009):

ε(i,Z) = c(i) fi(Z) (13.6)

where the fi are strictly increasing functions with values in (−1,0].
In each loss scenario, defined by a vector of capital losses ε , one can compute,

as in Definition 13.3, the Default Impact DI(i,c+ ε(Z),E) of a financial institu-
tion, computed as above but in the network with stressed capital buffers c+ ε(Z).
A macroeconomic stress scenario corresponds to a scenario where Z takes very
negative values. A plausible set of stress scenarios for stress testing purposes may
be defined by using a low quantile α of Z:

P(Z < α) = q

where q= 5% or 1% for example. Similar definitions based on quantiles of macroe-
conomic losses were proposed by Zhou et al. (2009).

We define the Contagion Index CI(i,c,E) of an institution i as its expected De-
fault Impact when the network is subject to such a macroeconomic stress scenario
(Cont, 2009):

Definition 13.4 (Contagion Index) The Contagion IndexCI(i,c,E) (at confidence
level q) of institution i ∈ V is defined as its expected Default Impact in a market
stress scenario:

CI(i,c,E) = E [DI(i,c+ ε(Z),E)|Z < α ] (13.7)

where the vector ε(Z) of capital losses is defined by (13.6) and α is the q-quantile
of the systematic risk factor Z: P(Z < α) = q.

In the examples given below, we choose for α the 5% quantile of the common
factor Z, which corresponds therefore to a (mild) market stress scenario whose
probability is 5%, but obviously other choices of quantile levels are perfectly fea-
sible.

The Contagion Index CI(i,c,E) measures the systemic impact of the failure of
an institution by the expected loss – measured in terms of capital – inflicted to the
network in the default cascade triggered by the initial default of i. In this way, it

Downloaded from Cambridge Books Online by IP 155.198.190.134 on Wed Jun 15 13:22:36 BST 2016.
http://dx.doi.org/10.1017/CBO9781139151184.018

Cambridge Books Online © Cambridge University Press, 2016



13: Network Structure and Systemic Risk in Banking Systems 351

jointly accounts for network contagion effects and correlations in portfolio losses
through common shocks.

The idea of jointly examining macroeconomic shocks to balance sheet and con-
tagion has also been examined in Elsinger et al. (2006a). However, unlike the met-
rics used by Elsinger et al. (2006a), the definition of the Contagion Index involves
conditioning on stress scenarios. This conditioning is essential to its interpreta-
tion: in this way, the Contagion Index focuses on the stability of banking system
in a stress scenario rather than exploring the average outcome of a macroeconomic
shock.

The computation of this index involves the specification (13.6) for the joint di-
stirbution of shocks affecting balance sheets. Other specifications – static or dy-
namic, factor-based or copula-based – are possible, but the co-monotonic shocks
leads to desirable monotonicity properties for the Contagion Index, viewed as a risk
measure (Cont, 2009). Note that, given the specification (13.6) with fi(Z) > −1,
we have c(i)+ ε(i,Z) > 0 so defaults are not caused by the market shocks alone.
However, since ε(i,Z) ≤ 0, capital buffers are lowered in stress scenarios so we
have

DI(i,c+ ε ,E)≥ DI(i,c,E) and thus CI(i,c,E)≥ DI(i,c,E).
In the examples below, we model Z as a negative random variable with a heavy-
tailed distribution F and an exponential function for fi:

ε(i,Z) = c(i)(exp(σiZ)−1) (13.8)

where σi is a scale factor which depends on the creditworthiness, or probability
of default pi, of institution i. For example, a possible specification is to choose σi
such that pi corresponds to the probability of losing 90% of the Tier 1 capital in a
market stress scenario:

σi =− log(10)
F−1(pi)

. (13.9)

Default probabilities are obtained from historical default rates given by credit rat-
ings for the firms at the date corresponding to the simulation.

13.4 Is default contagion a significant source of systemic risk?

Most empirical studies of interbank networks have pointed to the limited extent of
default contagion (Sheldon and Maurer, 1998; Furfine, 2003; Upper and Worms,
2004; Wells, 2004; Elsinger et al., 2006a,b; Mistrulli, 2007). However, almost all
these studies (with the exception Elsinger et al. (2006a,b)) examine the sole knock-
on effects of the sudden failure of a single bank by an idiosyncratic shock, thus
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ignoring the compounded effect of both correlated market events and default con-
tagion. A market shock affecting the capital of all institutions in the network can
considerably reduce capital buffers in the network, which makes it more vulnerable
to potential losses and increases the likelihood of large default cascades.

The data set of exposures in the Brazilian financial system allows to compute,
the Default Impact and the Contagion Index for each financial institution in the
Brazilian network. The Contagion Index is computed by Monte Carlo simulation
using the model specified in Section 13.3.3, using the procedures described in Cont
and Moussa (2010).

Figure 13.7 shows the cross-sectional distribution of the size of the average de-
fault cascade generated by the initial default of a single node. We observe that
while for most institutions this number is close to zero (which indicates no conta-
gion), for a very small number of institutions this number can be as high as 3 or 4,
meaning that the initial default of some nodes can trigger the default of up to 3 or
4 other nodes. This is a signature of contagion.

Another indicator of default contagion is the ratio of the Contagion Index of a
bank to its interbank liabilities. As shown in Figure 13.8, the Contagion Index can
significantly exceed the interbank liabilities for the most systemic nodes.
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Figure 13.7 Distribution of the size of default cascades (number of defaults).

Both the Default Impact and the Contagion Index exhibit heavy tailed cross-
sectional distributions (Figure 13.9), indicating the existence of a few institutions
that present a high contagion risk to the financial system (up to 10% of the total
capital of the network) while most institutions exhibit a small risk. As shown in
Figure 13.9, the proportion of nodes with large Default Impact and large Conta-
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Figure 13.8 Ratio of the Contagion Index to interbank liabilities: the Contagion Index can ex-
ceed the size of interbank liabilities by a large factor during periods of economic stress.

gion Index is the highest during June 2007 and December 2007. These periods
correspond to the onset of the subprime mortgage crisis in the United States.

Figure 13.10 displays the cross-sectional distribution of the ratio of the Conta-
gion Index to the Default Impact at different periods. We observe that the Conta-
gion Index may, for some nodes, significantly exceed the Default Impact, showing
that common shocks to balance sheets seem to amplify contagion, by reducing the
capital buffer available to financial institutions and rendering them more suscepti-
ble to default.

Exposures that are not covered by an adequate amount of capital to sustain their
loss in the event of default constitute channels of contagion across the system. We
will call such exposures contagious exposures:

Definition 13.5 (Contagious Exposure) An exposure Ei j is called contagious if it
exceeds the capital available to i: Ei j > c(i).

If the link i→ j represents a contagious exposure, the default of j leads to the
default of i in all stress scenarios. Thus, the subgraph constituted of contagious
exposures will be a primary support for the propagation of default cascades: the
larger this subgraph, the larger the extent of contagion. In a stress scenario in which
balance sheets are subjected to negative market shocks, new contagious exposures
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Figure 13.9 Brazilian interbank network: distribution of the default impact and the Contagion
Index on the logarithmic scale. The highest values of Default Impact and Contagion Index are
observed in June 2007 and December 2007.

may appear, leading to a higher degree of contagion. Figure 13.11 shows the graph
of contagious exposures (black) in the Brazilian network in June 2007, with, in red,
the exposures that become contagious once a (particular) set of correlated market
shocks is applied to balance sheets. As shown in Amini et al. (2010) using large-
network asymptotics, the path of contagion in large networks is concentrated on the
subgraph of contagious exposures, so keeping track of such exposures is a natural
idea in the monitoring of contagion.

Figure 13.12 presents the proportion of contagious exposures in the Brazilian
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Figure 13.10 Default impact vs Contagion Index: the Contagion Index can be up to fifteen times
larger than the Default Impact for some nodes.

system, their expected proportion under stress test scenarios, and their expected
proportion in scenarios where the level of common downward shocks to balance
sheets exceeds its 5% quantile. We find that correlated market shocks may increase
the proportion of contagious exposures considerably, so ignoring market risk when
assessing contagion effects can lead to a serious underestimation of the extent of
default contagion.

13.5 What makes an institution systemically important?

Previous studies on contagion in financial networks (Allen and Gale, 2000; Battis-
ton et al., 2009; Elsinger et al., 2006a; Nier et al., 2007) have examined how the
network structure may affect the global level of systemic risk but do not provide
metrics or indicators for localizing the source of systemic risk within the network.
The ability to compute a Contagion Index for measuring the systemic impact of
each institution in the network, enables us to locate the institutions which have the
largest systemic impact and investigate their characteristics.

We first investigate (Section 13.5.1) the effect of the size, measured in terms
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Figure 13.11 Network of contagious exposures before (dashed lines) and after (dashed and red
lines) market shocks.

of interbank liabilities or assets on the Contagion Index. Then we examine (Sec-
tion 13.5.2) the effect of network structure on the Contagion Index and define, fol-
lowing Cont and Moussa (2010), network-based indicators of connectivity coun-
terparty susceptibility and local network frailty, which are shown to be significant
factors for contagion.

13.5.1 Size of interbank liabilities

Size is generally considered a factor of systemic importance. In our modeling ap-
proach, where losses flow in through the asset side and flow out through the lia-
bility side of the balance sheet, it is intuitive that, at least at the first iteration of
the loss cascade, firms with large liabilities to other nodes will be a large source
of losses for their creditors in case of default. Accordingly, interbank liabilities are
highly correlated with any measure of systemic importance. A simple plot on the
logarithmic scale of the Contagion Index against the interbank liability size reveals
a strong positive relationship between the interbank liabilities of an institution in
the Brazilian financial system and its Contagion Index (see Figure 13.13). A linear
regression of the logarithm of the Contagion Index on the logarithm of the inter-
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Figure 13.12 Proportion of contagious exposures (a) in the initial network, (b) averaged across
market shock scenarios, (c) averaged across scenarios where common factor falls below 5%
quantile level.

bank liability size supports this observation: interbank liabilities explains 27% of
the cross-sectional variability of the Contagion Index.

Therefore, balance sheet size does matter, not surprisingly. However, the size
of interbank liabilities does not entirely explain the variations in the Contagion
Index across institutions: the interbank liability size does exhibit a strong positive
relationship with the Contagion Index, but the ranking of institutions according to
liability size does not correspond to their ranking in terms of systemic impact (see
Figure 13.13).
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Figure 13.13 Contagion Index versus total interbank liabilities (logarithmic scale), June 2007.

Table 13.7, where nodes are labeled according to their decreasing ranking in
terms of the Contagion Index, shows that they all have interbank liabilities less

Downloaded from Cambridge Books Online by IP 155.198.190.134 on Wed Jun 15 13:22:36 BST 2016.
http://dx.doi.org/10.1017/CBO9781139151184.018

Cambridge Books Online © Cambridge University Press, 2016



358 Cont, Moussa and Santos

Table 13.6 Log-log cross-sectional regression of the Contagion Index (expressed
in percentage of the total network capital) on the interbank liability in June 2007.

Model: log(CI) = β0 +β1 log(L)+ ε
Coefficients Standard error t-statistic R2

b0 = 4.53 2.64 1.71 27%
b1 = 0.69** 0.13 5.01
* significant at 5% confidence level
** significant at 1% confidence level

than the 90% quantile of the cross-sectional interbank liability sizes. This suggests
that factors other than size contribute to their systemic importance.

Table 13.7 Analysis of the five most contagious nodes in June 2007.
Rank Contagion Index Number of Interbank liability

(Billions BRL) creditors (Billions BRL)
1 3.48 25 1.64
2 3.40 21 0.97
3 2.09 20 1.10
4 1.78 20 0.60
5 1.45 34 1.59

Network median 0.0007 20 0.52
90%-quantile 0.53 28 2.07

13.5.2 Centrality and counterparty susceptibility

Table 13.7 shows that, while the large size of liabilities of the node with the highest
Contagion Index can explain its ranking as the most systemic node, this is not the
case, for instance, for the fourth most systemic node whose interbank liabilities
and number of counterparties are in line with the network average. This shows that
balance sheet size alone or simple measures of connectenedness such as number
of counterparties are not good proxies for systemic importance. This points to a
more subtle role of network structure in explaining the cross-sectional variability
in the Contagion Index. As shown in Figure 13.14 the five most systemic nodes
are not very connected and just have few contagious exposures (in red) but, as
shown in Figure 13.15, their creditors are heavily connected and many of their
cross-exposures are contagious exposures (in the sense of Definition 13.5). This
motivates to define indicators which go beyond simple measures of connectivity
and size: following Cont and Moussa (2010), we define indicators which attempt
to quantify the local impact of a default:

Downloaded from Cambridge Books Online by IP 155.198.190.134 on Wed Jun 15 13:22:36 BST 2016.
http://dx.doi.org/10.1017/CBO9781139151184.018

Cambridge Books Online © Cambridge University Press, 2016



13: Network Structure and Systemic Risk in Banking Systems 359

Definition 13.6 Susceptibility coefficient
The susceptibility coefficient of a node is the maximal fraction of capital wiped out
by the default of a single counterparty.

χ(i) = max
j 
=i

Ei j
c(i)

Figure 13.14 Subgraph of the five institutions with highest Contagion Index and their creditors
in the network in June 2007. Non contagious exposures are indicated by dotted links. Contagious
exposures are bold links.

A node with χ(i) > 100% may become insolvent due to the default of a sin-
gle counterparty. Counterparty risk management in financial institutions typically
imposes an upper limit on this quantity.

Definition 13.7 Counterparty susceptibility
The counterparty susceptibility CS(i) of a node i is the maximal (relative) exposure
to node i of its counterparties:

CS(i) =
max j,Eji>0Eji

c( j)

CS(i) is thus a measure of the maximal vulnerability of creditors of i to the
default of i.

Definition 13.8 Local network frailty
The local network frailty f (i) at node i is defined as the maximum, taken over
counterparties exposed to i, of their exposure to i (in % of capital), weighted by the
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Figure 13.15 Subgraph of the five institutions with highest Contagion Index and their first and
second-order neighbors in the network in June 2007.Non contagious exposures are indicated by
dotted links. Contagious exposures are bold links.

size of their interbank liability:

f (i) = max
j,Eji>0

Eji
c( j)

L( j)

Local network frailty combines the risk that the counterparty incurs due to its
exposure to node i, and the risk that the (rest of the) network incurs if this counter-
party fails. A large value f (i) indicates that i is a node whose counterparties have
large liabilities and are highly exposed to i.

The analysis of the creditors of the five most systemic institutions in the network
(see Table 13.8) indicates that, whereas the size of interbank liabilities fails to ex-
plain their high Contagion Index, this is better understood by looking at the number
of creditors and the size of interbank liabilities of the counterparties, as well as the
counterparty susceptibility and local network frailty. We observe that the five most
systemic nodes have each at least one highly connected counterparty with a large
interbank liability size and exhibit in general a high counterparty susceptibility and
local network frailty.

Figure 13.16 shows that institutions with a high Contagion Index tend to have
a large interbank liability, local network frailty and counterparty susceptibility. To
investigate the relevance of these measures of connectivity and centrality, we per-
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Table 13.8 Analysis of the counterparties of the five most contagious nodes in
June 2007.

Ranking max j,Eji>0 kout( j) max j,Eji>0L( j) CS(i) f (i)
(Billions BRL) (Billions BRL)

1 36 11.23 1.23 8.78
2 34 23.27 1.65 3.15
3 36 23.27 3.68 46.92
4 36 2.91 2.28 0.97
5 36 11.23 5.88 1.52

Network median 36 2.91 0.19 0.07
90%-quantile 36 23.27 3.04 6.89

form a logistic regression of the indicator of the Contagion Index being higher than
1% of the total network capital, using as instrumental variables interbank liabilities,
counterparty susceptibility and local network frailty.

The outputs of the logistic regression are summarized in Table 13.9. We observe
that counterparty susceptibility and local network frailty contribute significantly to
the probability of observing a large Contagion Index1: positive coefficients at the
1% significance level and a very high pseudo-R2.

We also test for the differences in median between the counterparty susceptibility
of the institutions with a Contagion Index higher than 1% of the total network
capital and the counterparty susceptibility of those with a Contagion Index smaller
than 1% of the total network capital. The Wilcoxon signed-rank test rejects the
hypothesis of equal medians at the 1% level of significance. The median of the
counterparty susceptibility of the institutions with a high Contagion Index (2.29)
is significantly higher than the median of the counterparty susceptibility of the
institutions with a small Contagion Index (0.06). Similarly, the median of the local
network frailty of the institutions with a high Contagion Index (18.79 billion BRL)
is significantly higher than the median of the local network frailty of the institutions
with a small Contagion Index (0.02 billion BRL).

13.6 Does one size fit all? The case for targeted capital requirements

Capital requirements are a key ingredient of bank regulation: in the Basel Accords,
a lower bound is imposed on the ratio of capital to (risk-weighted) assets. It is
clear that globally increasing the capital cushion of banks will decrease the risk of
contagion in the network, but given the heterogeneity of systemic importance, as
measured for instance by the Contagion index, it is not clear whether a uniform
capital ratio for all institutions is the most efficient way of reducing systemic risk.

1 The Adjusted Pseudo-R2 in a logistic regression is defined as 1− logL(M)/ logL(0)((n− 1)/(n− k− 1))
where logL(M) and logL(0) are the maximized log likelihood for the fitted model and the null model, n is the
sample size and k is the number of regressors.

Downloaded from Cambridge Books Online by IP 155.198.190.134 on Wed Jun 15 13:22:36 BST 2016.
http://dx.doi.org/10.1017/CBO9781139151184.018

Cambridge Books Online © Cambridge University Press, 2016



362 Cont, Moussa and Santos

Figure 13.16 Counterparty susceptibility (upper figure) and local network frailty (lower figure)
of the most systemic nodes (with a Contagion Index higher than 1% of the network capital) and
the less systemic nodes (with a Contagion Index smaller than 1% of the network capital).

Indeed, using a uniform capital ratio penalizes neither the systemic importance of
the institutions not the concentration of risk on a few counterparties, two features
which our analysis points to as being important.

Indeed, recent debates on regulatory reform have considered the option of more
stringent capital requirements on systemically important institutions. The analysis
described above points to two types of ‘targeted’ capital requirements.

A first, natural, idea consists in imposing (more stringent) capital requirements
on the most systemic institutions in the network. This may be done by first com-
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Table 13.9 Marginal contribution of the interbank liabilities, counterparty
susceptibility and local network frailty to the Contagion Index.

Model: logit(p(CI > 1%)) = β0 +β1 log(L)+β2 log(CS)+ ε
Coefficients Std error Adjusted Pseudo-R2

β̂0 = -20.85** 7.96 93.46%
β̂1 = 0.96* 0.39
β̂2 = 0.98* 0.40

Model: logit(p(CI > 1%)) = β0 +β1 log(L)+ ε
Coefficients Std error Adjusted Pseudo-R2

β̂0 = -29.24** 7.11 94.54%
β̂1 = 1.39** 0.34

Model: logit(p(CI > 1%)) = β0 +β1 log(CS)+ ε
Coefficients Std error Adjusted Pseudo-R2

β̂0 = -1.46** 0.37 43.36%
β̂1 = 1.31** 0.33

Model: logit(p(CI > 1%)) = β0 +β1 log(L)+β2 log( f )+ ε
Coefficients Std error Adjusted Pseudo-R2

β̂0 = -43.20** 11.06 97.76%
β̂1 = 1.05** 0.39
β̂2 = 0.97** 0.29

Model: logit(p(CI > 1%)) = β0 +β1 log( f )+ ε
Coefficients Std error Adjusted Pseudo-R2

β̂0 = -21.32** 4.75 93.79%
β̂1 = 0.95** 0.22

* significant at 5% confidence level ** significant at 1% confidence level

puting the Contagion Index of all institutions and imposing a higher capital ratio
on, say, the 5 most systemic nodes.

A second method is to target the ‘weak links’ in the network which correspond
to exposures which constitute a high fraction of capital. Such exposures have a
higher probability of becoming ”contagious exposures” (in the sense of Definition
13.5) when capital buffers are reduced in a stress scenario. Such ‘weak links’ may
be strengthened by imposing a minimal capital-to-exposure ratio which, unlike the
aggregate capital ratios currently implemented in Basel II, would penalize concen-
tration of exposures across few counterparties.

Studies in epidemiology or the spread of viruses in peer-to-peer networks (Co-
hen et al., 2003; Madar et al., 2004; Huang et al., 2007) have explored similar
problems in the context of immunization of heterogeneous networks to contagion.
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Madar et al. (2004) study various immunization strategies in the context of epi-
demic modeling and show that a targeted immunization strategy that consists in
vaccinating first the nodes with largest degrees is more cost-effective than a ran-
dom or exhaustive immunization scheme.

These ideas may be implemented using capital ratios:

• Minimum capital ratio: institutions are required to hold a capital equal to or
higher than cover a portion θ of their aggregae interbank exposure:

c(i) = max(c(i),θA(i)) (13.10)

• Minimum capital-to-exposure ratio: institutions are required to hold a level of
capital which covers a portion γ of their largest interbank exposure:

c(i) = max(c(i),
max j 
=i(Ei j)

γ
) (13.11)

This penalizes nodes with large counterparty susceptibility (Definition 13.7) and
local network frailty (Definition 13.8), which is a desirable feature.

To assess the impact on systemic risk of these different schemes for the alloca-
tion of capital across institutions, we compare the cross-sectional distribution of
the Contagion Index in the Brazilian network when

(a) a minimum capital ratio is applied to all financial institutions in the network
(non-targeted capital requirements),

(b) a minimum capital ratio applied only to the 5% most systemic institutions (tar-
geted capital requirements),

(c) a minimum capital -to-exposure ratio is applied to the 5% most systemic insti-
tutions (disaggregated and targeted capital requirements),

by computing in each case the average of 5% largest Contagion Indexes (i.e. the 5%
tail conditional expectation of the cross-sectional distribution of Contagion Index).

Figure 13.17 displays the result of our simulation for the Brazilian network: for
each allocation of capital across nodes, we represent the average Contagion In-
dices for the 5% most systemic institutions versus the total capital allocated to the
network. Assets and liabilities are identical for all networks considered. Compar-
ing cases a. and b. shows that targeted capital requirements can achieve the same
reduction in the size of default cascades while requiring less capital.

Another observation is that setting a minimum capital-to-exposure ratio (cass c.)
seems to be slightly more effective than simply setting a minium ratio of capital to
aggregate interbank assets. The reason is intuitive: a minimum capital-to-exposure
penalizes concentrated exposures and reduces the number of contagious exposures
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Figure 13.17 Comparison of various capital requirement policies: (a) imposing a minimum cap-
ital ratio for all institutions in the network, (b) imposing a minimum capital ratio only for the 5%
most systemic institutions, (c) imposing a minimum capital-to-exposure ratio for the 5% most
systemic institutions.

in the network. In this case the gain is not very large, but the exact magnitude of
the resulting decrease in systemic risk depends on the network configuration.

We conclude that, given the heterogeneity of banks in terms of size, connectivity
and systemic importance,

• targeting the most contagious institutions is more effective in reducing systemic
risk than increasing capital ratios uniformly across all institutions, and

• capital requirements should not simply focus on the aggregate size of the bal-
ance sheet but depend on their concentration/distribution across counterparties:
a minimal capital-to-exposure ratio can be a more effective way of controling
contagious exposures.
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