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We study properties of causal couplings for probability measures on the
space of continuous functions. We first provide a characterization of bicausal
couplings between weak solutions of stochastic differential equations. We
then provide a complete description of all such bicausal Monge couplings. In
particular, we show that bicausal Monge couplings of d-dimensional Wiener
measures are induced by stochastic integrals of rotation-valued integrands.
As an application, we give necessary and sufficient conditions for bicausal
couplings to be induced by Monge maps and show that such bicausal Monge
transports are dense in the set of bicausal couplings between laws of SDEs.
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1. Optimal transport and its causal counterpart. The theory of optimal transport of
probability measures and the associated Wasserstein metric has been the focus of a large body
of research [2, 31, 32, 37] with rich ramifications across various branches of mathematics
and applications. In the context of stochastic processes, where one deals with probability
measures on filtered spaces, it is natural to incorporate a compatibility condition with the
flow of information, leading to the concept of causal transport [28], defined as a transport
which makes use, at any time t, only the information available at t. As shown by Lassalle [28],
when the underlying space is the space of trajectories of a stochastic process, the concept of
causal transport has interesting connections with stochastic analysis.

A natural example of causal transport is the one induced by a non-anticipative map. Denote
by Wd :=C([0,1],Rd) the space of continuous Rd-valued functions on [0,1], with its canon-
ical filtration (Ft)t∈[0,1]. A map T :Wd →Wd may be naturally interpreted as a Rd−valued
functional F : [0,1]×Wd 7→ F (ω, t) := T (ω)(t) ∈Rd. Such a functional is said to be causal
or non-anticipative [14, 21] if F (ω, t) depends on the path ω only through its values on [0, t]:

F (ω, t) = F (ω(· ∧ t), t), where s∧ t := min{s, t}.

The causality of F is equivalent to T−1(Ft)⊆Ft for all t ∈ [0,1]. Any probability measure η
on Wd, is thus transported in a causal manner, i.e. non-anticipative with respect the filtration,
to an image measure ν on on Wd. The map T is then an example of causal (Monge) coupling
on Wd ×Wd between η and ν.

An equivalent manner to state that T :Wd →Wd is causal is to require that

∀t ∈ [0,1], ∀B ∈ Ft, ω 7→ δT (ω)(B) is Ft-measurable,

where δT (ω) is the point mass at T (ω) ∈Wd. Denoting by X the canonical process on Wd,
δT (ω) represents in fact the ‘conditional distribution’ of T (X) given X = ω:

δT (ω) = Lη
(
T (X)|X = ω

)
This suggests the following definition of causality for an arbitrary coupling: given a probabil-
ity measure π on Wd×Wd and writing X and Y as the first and second marginal processes,
one replaces the above condition with the requirement that

(1) ∀t ∈ [0,1], ∀B ∈ Ft, ω 7→ Lπ
(
Y |X = ω

)
(B) is Ft-measurable.

There are some technical subtleties to take care of since the conditional distribution is only
defined up to null sets, and there is a choice to be made between using the canonical filtration
or its right-continuous version. We will give a precise definition below (Definition 2.1).

Since the notion of causality is not symmetric, the corresponding optimal transport prob-
lem does not yield a (symmetric) notion of distance. A remedy is to consider bicausal cou-
plings, which satisfy (1) and its symmetric counterpart

∀t ∈ [0,1], ∀B ∈ Ft, ω 7→ Lπ
(
X|Y = ω

)
(B) is Ft-measurable.

Causal optimal transport has been studied in detail in the discrete time case [4–6, 8, 16, 17,
35, 38], where the sequential character of processes allows to study the properties over a
single time period and extend them by induction. However, the continuous time case reveals
much more structure, with links to stochastic analysis and functional inequalities [22, 28].

As noted by Lassalle [28], the Ito map associated with the unique strong solution of a
stochastic differential equation (SDE) is a natural example of causal Monge transport from
the Wiener measure to the law of the solution, while the concept of weak solution provides
an example of causal coupling à la Kantorovich between the Wiener measure and the law of
the solution. Optimal transport on the Wiener space has been investigated in [19, 20]. Causal
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transport on Wiener space has been investigated in the context of filtration enlargements [1]
and its relation to Talagrand’s inequality [22, 28]. Backhoff et al. [5] show the relevance of
causal Wasserstein distances induced by such causal transports for superhedging problems.

The present work is a detailed study of the structure of (bi-)causal couplings on path
space, focusing on the case where the measures involved have a ‘differential’ structure i.e.
are (weak) solutions of stochastic differential equations (SDEs). In addition to confirming
that many of the results obtained in the discrete-time setting remain true for (bi-)causal trans-
ports on path space, we show that, when the measures are weak solutions of SDEs, bicausal
transports between these measures inherit this differential structure and may be represented
in terms of stochastic integrals or, more generally, semimartingales. In contrast to the discrete
time case, we show that causal transport between laws of SDEs has a rigid structure: essen-
tially, bicausal couplings of SDEs are given by bicausal coupling of the driving Brownian
motions (Theorem 3.2), for which we give a complete description (Theorem 3.1).

Related questions have been studied in [7, 33], where (bi-)causal transport problems for
solutions to scalar SDEs are investigated, as well as in [10] using a stochastic control ap-
proach.

1.1. Contributions. We study properties of (bi)causal couplings for probability measures
on the space of continuous functions defined. We first prove a characterization of bicausal
couplings between weak solutions of SDEs and then investigate the case where the bicausal
couplings are induced by a Monge transport. Denoting by the Πc(η, ν) (resp. Πbc(η, ν)) the
set of all causal (resp. bicausal) couplings, for any map T :Wd →Wd which transports η to
ν, i.e. T#η = ν, we have

(Id, T )#η ∈Πc(η, ν) ⇐⇒ T is non-anticipative.

We show in Lemma 3.4 that, when η and ν are unique weak solutions of SDEs,

(Id, T )#η ∈Πbc(η, ν) ⇐⇒ (Tt)t∈[0,1] is a
(
η, (Ft)t∈[0,1]

)
-semimartingale,

where Tt := T (ω)(t). Using a martingale representation result of Üstünel [36], we are able
to completely characterise bicausal Monge transports between such measures. We show that
such maps inherit the differential structure of η, ν in the sense that T satisfies an SDE (9)
(Theorem 3.3). In particular, we show bicausal Monge transports of d-dimensional Wiener
measures are induced by stochastic integrals of adapted Od-valued integrands, where Od is
the orthogonal group of d× d matrices.

Given an SDE with unique strong solution, the Ito map provides an example of causal
transport from the Wiener measure Wd to the law ν of the solution on path space. Theorem
3.3 characterizes all bicausal Monge maps from Wd to ν as the composition of the Ito map
with integration against an adapted Od-valued process.

Using the aforementioned characterization of bicausal Monge transports, we give sim-
ple conditions for their existence (Corollaries 3.2,3.4,3.5). We show that any bicausal cou-
pling between Wiener measures has a differential representation i.e. may be represented by a
stochastic differential equation (Proposition 4.1). Through this SDE, we can establish neces-
sary and sufficient conditions for bicausal couplings between weak solutions of SDEs to be
induced by a Monge map (Proposition 4.1 and Corollary 4.1).

Beiglböck et al. [9] showed that in discrete time, the set Tc
(
P,P′) of causal Monge cou-

plings is dense in the set of all causal couplings. We show that similar density properties hold
for bicausal transports between laws of SDEs with strong, pathwise unique solutions and con-
tinuous (possibly path-dependent) drift and invertible diffusion coefficients (Proposition 4.4
and 4.5). The proofs make use of M. Émery’s results on “almost Brownian filtrations"[18],
whose potential role in the study of causal transports was already noticed in [9, Section 5.4].
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A consequence of our results is that, for many cost functions the bicausal Monge problem
between weak solutions of SDEs and its Kantorovich relaxation lead to the same transport
cost (Corollary 4.2).

Outline. Section 2.1 establish notations and defines causal couplings and maps. Section 3
contains the main results on the characterization of bicausal couplings and Monge maps be-
tween laws of solutions of SDEs, and some results regarding the existence of such transports.
Section 4 considers some applications of these results.

2. Causal couplings on path space.

2.1. Notations. Let d ≥ 1. Given v,w ∈ Rd, we denote the standard Euclidean inner
product as (v,w)Rd and norm∥v∥Rd :=

√
(v, v)Rd . The space of d× d matrices is written as

Rd×d. Idd ∈ Rd×d is the identity matrix. Given A ∈ Rd×d, A∗ denotes the transpose of A,
A−1 denotes the inverse of A, trA denotes its trace, detA denotes its determinant, kerA
denotes its kernel and A† denotes its Moore-Penrose pseudoinverse [23], that is, A† is the
unique matrix satisfying i)AA†A=A, ii)A†AA† =A†, iii)AA† and A†A are symmetric.
We denote Od the set of orthogonal matrices, Sd

+ the set of symmetric matrices, Sd
+ the subset

of symmetric positive semi-definite matrices and Cd ⊆ Sd - the subset of matrices defined as
in [18]:

Cd = {C ∈ Sd,

(
Idd C
C∗ Idd

)
∈ S2d

+ }= {C ∈ Sd,∥C∥op ≤ 1}= conv(Od),

where ∥.∥op designates the operator norm and conv designates the convex hull. The second
and third equalities are shown in [18, Proposition 1].

Denote Wd := C([0,1],Rd), the space of continuous Rd-valued functions on [0,1].
Equipped with the topology τWd induced by the supremum norm, ∥·∥∞, Wd is a Polish
space with Borel σ-algebra F1 := σ(τWd). The canonical filtration is denoted (Ft)t∈[0,1] and
given by Ft = σ(ft) ⊆ F1, where ft :Wd → (Wd,F1), ft(ω) := ω(· ∧ t) for t ∈ [0,1] and
set (Ht)t∈[0,1] to be the right-continuous version of the canonical filtration, i.e.

Ht =Ft+ = ∩ϵ>0F(t+ϵ)∧1 ⊆F1.

The canonical process on Wd is defined as X : Wd × [0,1] → Rd, X(ω, t) = Xt(ω) :=
ω(t). When we write X·, we mean the identity map, i.e. X· : Wd → Wd, X·(ω) = ω. On
the product Wd ×Wd, without risk of confusion, X will also denote the first component
X(ω,ω′) := ω while Y denotes the second component Y (ω,ω′) := ω′.

Given measurable spaces (Zi,Zi), where i= 1,2 and Zi is some σ-algebra, Z1⊗Z2 is the
product σ-algebra on Z1×Z2. P(Zi) denotes the space of probability measures on Zi. Given
η ∈ P(Z1), the η-completion of Z1 is written as Zη

1 . Given a Z1/Z2-measurable function
f : Z1 → Z2, f#η ∈ P(Z2) is the pushforward of η under f , i.e. f#η(A) := η

(
f−1(A)

)
for A ∈ Z2. Furthermore, for p ≥ 1, we write Lp(η,Z1) to be the set of all Z1-measurable
functions f : Z1 →R (identified up to η-a.s. equivalence) satisfying

Eη
(
|f |p

)
:=

∫
Z1

∣∣f(ω)∣∣pη(dω)<∞.

A filtration on (Z1,Z1) is a family of σ-algebras (Nt)t∈[0,1], such that Ns ⊆ Nt ⊆ Z1

for all 0 ≤ s ≤ t ≤ 1. We call the quadruple
(
Z1,Z1, (Nt)t∈[0,1], η

)
a stochastic basis if
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(Nt)t∈[0,1] is a η−complete, right-continuous filtration. The space of all square-integrable
(η, (Nt)t∈[0,1])-martingales is denoted

M2
(
η, (Nt)t∈[0,1]

)
:=

{
M = (Mt)t∈[0,1] is an (η, (Nt)t∈[0,1])-martingale, sup

t∈[0,1]
Eη|Mt|2 <∞

}
.

Finally, if ηi ∈ P(Zi) for i= 1,2, η1 ⊗ η2 denotes the product coupling η1 ⊗ η2(A×B) :=
η1(A)η2(B) for A ∈Z1,B ∈Z2.

2.2. Definitions. Let η, ν ∈ P(Wd) be probability measures. π ∈ P(Wd×Wd) is a cou-
pling of (η, ν) if

X#π = η and Y#π = ν.

The set of all such couplings is denoted Π(η, ν). Since Wd ×Wd equipped with the product
topology is a Polish space, for any π ∈Π(η, ν) there exists an η-a.s. unique probability kernel
Θπ :Wd ×F1 → [0,1], (ω,A) 7→Θω

π(A) which disintegrates π with respect to η [26]:

π(A×B) =

∫
Wd

1A(ω)Θ
ω
π(B)η(dω).

We call Θπ the disintegration of π with respect to η. Note that Θω
π is a version of the con-

ditional distribution of Y given X = ω, Lπ
(
Y |X = ω

)
. We recall the definitions of causal

transports and causal couplings [1, 28]:

DEFINITION 2.1 (Causal couplings and causal Monge maps).
Let Ht be the right-continuous version of the canonical filtration, defined as above.

1. π ∈Π(η, ν) is a causal coupling between η and ν if

(2) for all t ∈ [0,1] and B ∈Ht, ω 7→Θω
π(B) is Hη

t -measurable.

We denote by Πc(η, ν) the set of causal couplings between η and ν;
2. A measurable map T : Wd → Wd is a causal Monge transport between η and ν if the

image of η under T is ν and the induced transport plan πT := (X·, T )#η is a causal
transport: πT ∈Πc(η, ν).

3. π ∈ Π(η, ν) is a bicausal coupling between η and ν if π ∈ Π(η, ν) and R#π ∈ Π(ν, η)
where R is the exchange of coordinates:

R :Wd ×Wd →Wd ×Wd

(ω′, ω) 7→R(ω,ω′) := (ω′, ω)

The set of all bicausal couplings between η and ν is denoted Πbc(η, ν).
4. T :Wd →Wd is said to be a bicausal Monge map between η and ν if πT ∈Πbc(η, ν).

Tbc(η, ν) denotes the set of all π ∈Π(η, ν) such that π = πT for some bicausal Monge
map T . Abusing notation, we will write T ∈ Tbc(η, ν) if πT is a bicausal coupling.

5. Tbcb(η, ν) denotes the set of all couplings π ∈ Π(η, ν) such that π = πT for some a.s.
bijective1 bicausal Monge map T .

REMARK 1.

1. Comparing Definition 2.1 and (1), we observe two differences:

1T is a.s. bijective if there exists T̂ :Wd →Wd such that η-a.s. T̂ ◦ T =X· and ν-a.s. T ◦ T̂ =X·.
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• we ask for measurability with respect to the completed σ-algebra Hη
t , instead of just

Ht. This is because the disintegration Θπ is only η-a.s. unique;
• Second, we have used the right-continuous filtration (Ht)t∈[0,1], instead of (Ft)t∈[0,1].

This is motivated by the fact
(
Hη

t

)
t∈[0,1] is a complete, right-continuous filtration for

which many familiar results from stochastic analysis hold, e.g. martingales have càdlàg
modifications.

2. To verify (2), it is sufficient to check measurability of Θπ(B) for all B ∈ Ft. This obser-
vation implies that:
• if Hη

t = Fη
t for all t ∈ [0,1], then it does not matter if we replace Ht with Ft in (2).

Indeed, the set of causal couplings would not change. This was observed in [7, Remark
2.4] for the case when η is the law of a strongly Markov process. We also mention [29,
Theorem 5.19] which shows that Hη

t =Fη
t when η is the law of an SDE with Lipschitz

drift and uniformly elliptic diffusion coefficient; and,
• Πc(η, ν) and hence, Πbc(η, ν), are compact for the topology of weak convergence by

[28, Theorem 1, Remark 5].

2.3. Relation with the H-hypothesis. Brémaud and Yor [11] introduced the H-hypothesis
as a property of filtrations useful in filtering theory. Two filtrations (Mt)t∈[0,1] and (Nt)t∈[0,1]
on a probability space (Ω,N ,P) such that Mt ⊆Nt ⊆N are said to satisfy the H-hypothesis
if every square integrable (P, (Mt))-martingale is also an (P, (Nt))-martingale:2

M2(P, (Mt)t∈[0,1])⊆M2(P, (Nt)t∈[0,1]).

It was noticed in [1] that causality of π ∈ Π(η, ν) is equivalent to the H-hypothesis for the
filtrations (Ht ⊗ {∅,Wd})t∈[0,1] and

(
Hη

t ⊗Ht

)
t∈[0,1] on (Wd × Wd,F1 ⊗ F1, π). Since

this is a key property that we will use repeatedly, we state it as a theorem below. Given a
probability measure π on the product space (Wd × Wd,F1 ⊗ F1) we denote by Pπ

t the
right-continuous π−completion of the canonical product filtration:

(3) Pπ
t := ∩ϵ>0(Ht+ϵ ⊗Ht+ϵ)

π

THEOREM 2.2. A coupling π ∈Π(η, ν) is a causal coupling if and only if the filtrations
(Hη

t ⊗{∅,Wd})t∈[0,1] and (Pπ
t )t∈[0,1] on (Wd ×Wd,F1 ⊗F1, π) satisfy the H-hypothesis:

(4) M2(π, (Hη
t ⊗ {∅,Wd})t∈[0,1])⊆M2(π, (Pπ

t )t∈[0,1]).

PROOF. From [11, Theorem 6] or [1, Remark 2.3], π ∈ Πc(η, ν) if and only if the H-
hypothesis holds between filtrations (Ht ⊗ {∅,Wd})t∈[0,1] and

(
Hη

t ⊗Ht

)
t∈[0,1] on (Wd ×

Wd,F1 ⊗F1, π). Hence, necessity is clear since Hη
t ⊗Ht ⊆∩ϵ>0(Ht+ϵ ⊗Ht+ϵ)

π .
To prove sufficiency, let (Mt)t∈[0,1] be a (π, (Hη

t ⊗ {∅,Wd}))-martingale, which we can
assume without loss of generality to be càdlàg. It is straightforward to verify that (Mt)t∈[0,1]
is a (π, (Hη

t ⊗Ht))-martingale by causality of π in light of [11, Theorem 6] or [1, Remark
2.3]. Since (Mt)t∈[0,1] is càdlàg, it is a (π, (Pπ

t )t∈[0,1])-martingale by [34, Lemma 67.10] as
required.

REMARK 2. Note that the filtrations in the above theorem are complete and right-
continuous. In particular, martingales have càdlàg modifications and up to standard local-
ization techniques, it is sufficient to consider bounded martingales for checking the H-
hypothesis. One can obtain other characterisations of causality using [11, Theorem 3].

2Note that this is a “property" rather than a “hypothesis" but we will stick to the historical terminology intro-
duced in [11].
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3. Causal Transport between weak solutions of stochastic differential equations.

3.1. Bicausal couplings of Wiener measures. We first examine bicausal couplings of (d-
dimensional) Wiener measures.

THEOREM 3.1 (Bicausal couplings of Wiener measures). π ∈Πbc(Wd,Wd) if and only
if there exists a stochastic basis (Ω,G, (Gt)t∈[0,1],P) and two d-dimensional (Gt)t∈[0,1]-
Brownian motions B and B such that π is the joint law of (B,B). In particular, there exists
a (Gt)t∈[0,1]-progressively measurable process ρ : [0,1]×Ω→Cd such that

∀t ∈ [0,1] [B,B]t =

∫ t

0
ρsds, π-a.s..

PROOF. Assume π ∈Πbc(Wd,Wd). By Theorem 2.2, the marginal processesX and Y are
(π, (Pπ

t )t∈[0,1])-martingales (and, hence Brownian motions), from which the desired result
follows.

To see necessity, we first show that under π := (B,B)#P, X is a (π, (Ht ⊗Ht)t∈[0,1])-
martingale. Fix any 0 ≤ s < t ≤ 1, A,C ∈ Hs and (ω,ω′) 7→ 1A×C(ω,ω

′). Since B,B are
(Gt)t∈[0,1]-Brownian motions, they are (P, (Gt))-martingales and B−1(Hs),B

−1
(Hs)⊆ Gs.

Hence, we compute

Eπ((Xt −Xs)1A×C) = EP((Bt −Bs)1A×C(B,B)) = 0,

which verifies the desired. By continuity of sample paths and [34, Lemma 67.10], we even
have that X is a (π, (Pπ

t )t∈[0,1])-martingale. By the martingale representation theorem of
Brownian motion, every element in M2(π, (HWd

t ⊗ {∅,Wd})t∈[0,1]) can be written as a
stochastic integral against X , from which we conclude (4) holds and π ∈ Πc(Wd,Wd) by
Theorem 2.2. A completely symmetric argument gives π ∈Πbc(Wd,Wd).

The existence of ρ follows from the Kunita-Watanabe inequality. Indeed, the aforemen-
tioned inequality gives

|[B,B]t − [B,B]s| ≤ ([B]t − [B]s)
1/2([B]t − [B]s)

1/2 = |t− s|,

which shows that [B,B] has finite total variation, which is absolutely continuous with respect
to the Lebesgue measure.

REMARK 3. Note that (B,B) is not necessarily an R2d-valued Brownian motion. As
an example, given a Brownian motion B, one can set Bt =

∫ t
0 (1[0,1/2)(s) + (1{B1/2≥0} −

1{B1/2<0})1[1/2,1](s))dBs. By Lévy’s characterization of Brownian motion, B = (Bt)t∈[0,1]
is Brownian motion with respect to the filtration generated by B, and hence, Law(B,B) ∈
Πbc(W1,W1) by Theorem 3.1. But this joint law is not a Gaussian measure since B1−B1 =
21{B1/2<0}(B1 −B1/2).

3.2. Bicausal couplings between solutions of SDEs. We now provide a characterisation
of bicausal couplings and Monge transports between weak solutions of SDEs. We first present
the main results, Theorem 3.2 and 3.3, and their corollaries and defer technical proofs to
Section 3.4. Let

A d,d′
:=
{
α : [0,1]×Wd →Rd×d′

: α is (Ft)t∈[0,1]-progressively measurable
}
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Fσ,b

Fσ,b

×
Wd

Wd

π ×
Wd

Wd

π̂ ∈Πbc

(
Wd,Wd

)

FIG 1. Bicausal couplings π ∈ Πbc(µ
σ,b
z , µ

σ,b
z ) between (strong) solutions of SDEs may be constructed by

pushing forward bicausal Wiener couplings π̂ ∈Πbc(W
d,Wd) with the Ito maps (Fσ,b, Fσ,b).

for d, d′ ≥ 1. We consider the SDEs

dZt = b(t,Z)dt+ σ(t,Z)dBt, Z0 = z(5)

dZt = b(t,Z)dt+ σ(t,Z)dBt, Z0 = z.(6)

where σ,σ ∈ A d,d and b, b ∈ A d,1 are such that

ASSUMPTION 1. There exists a unique weak solution µσ,bz ∈ P(Wd) (resp. µσ,bz ∈
P(Wd) for (5) (resp. for (6)).

The following theorem is a characterization of the set of bicausal couplings between the
solutions of SDEs. It generalizes [7, Proposition 2.2] to the case where d > 1 and the SDEs
may not necessarily have strong solutions.

THEOREM 3.2. π ∈ Πbc(µ
σ,b
z , µσ,bz ) if and only if there exists a stochastic basis(

Ω,G, (Gt)t∈[0,1],P
)
, d-dimensional (Gt)t∈[0,1]-Brownian motions B and B and (Gt)t∈[0,1]-

adapted processes Z,Z such that

• (Z,B) and (Z,B) satisfy (5) and (6) respectively, and
• π is the joint law of (Z,Z): π = (Z,Z)#P.

In particular, the joint law of (B,B) under P is a bicausal Wiener coupling.

In other words, all bicausal couplings may be obtained by a bicausal coupling of the Brow-
nian motions in (5) and (6).

Consider the case of bicausal couplings between d-dimensional Wiener measures. Theo-
rem 3.2 gives that π ∈Πbc(Wd,Wd) if and only if π is the joint law of two processes which
are Brownian motions with respect to a common filtration. A consequence of this observation
is that all bicausal couplings between SDEs with strong, pathwise unique solutions are ob-
tained by taking the image of bicausal Wiener couplings in Πbc(Wd,Wd) under the respective
Ito maps (Figure 1).

COROLLARY 3.1. Assume the SDEs (5) and (6) have strong solutions satisfying path-
wise uniqueness, given by the Ito maps F σ,b : (Wd,F1) → (Wd,F1) (resp. F σ,b). Then
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all bicausal couplings π ∈ Πbc(µ
σ,b
z , µσ,bz ) between the solutions of the SDEs may be ob-

tained by pushing forward bicausal Wiener couplings π̂ ∈ Πbc(Wd,Wd) with the Ito maps
(F σ,b, F σ,b):

Πbc(µ
σ,b
z , µσ,bz ) =

{(
F σ,b, F σ,b

)
#
π̂ : π̂ ∈Πbc(Wd,Wd)

}
,

where (F σ,b, F σ,b)#π̂ designates the image of the measure π̂ under the map

(X,Y ) ∈Wd ×Wd 7→ (F σ,b(X), F σ,b(Y )).

PROOF. The construction is shown in Figure 1. Note that the assumption of unique, strong
solutions automatically implies weak uniqueness so that Assumption 1 holds and we can use
Theorem 3.2, which yields the desired result.

The preceding corollary allows us to deduce the properties of Πbc(µ
σ,b
z , µσ,bz ) from the

study of Πbc(Wd,Wd), which we will use in Section 4.

3.3. Characterisation of bicausal Monge transports. For bicausal Monge maps, we first
note that on (Wd,F1, µ

σ,b
z ), the canonical process (Xt)t∈[0,1] is a (µσ,bz , (Ht))-semimartingale

with decomposition

(7) Xt = z +

∫ t

0
b(s,X)ds+M

µσ,b
z

t µσ,bz -a.s. t ∈ [0,1],

where (M
µσ,b

z

t ) is a (µσ,bz , (Ht))-local martingale with quadratic variation

(8)
[
Mµσ,b

z ,Mµσ,b
z

]
t
=

∫ t

0
σ(s,X)σ∗(s,X)ds µσ,bz -a.s. t ∈ [0,1].

We then have the following characterization:3

THEOREM 3.3 (Characterisation of bicausal Monge transports). Let η := µσ,bz and ν :=
µσ,bz . For T :Wd →Wd, define Tt(ω) := T (ω)(t) ∈Rd for t ∈ [0,1]. T is a bicausal Monge
map from η to ν if and only if there exists some

(
Hη

t

)
t∈[0,1]-progressively measurable process

Q : [0,1]×Wd →Od such that (Tt)t∈[0,1] is a (η,
(
Hη

t

)
t∈[0,1])-semimartingale satisfying

(9) Tt = z +

∫ t

0
b(s,T )ds+

∫ t

0
σ(s,T )Qsσ

†(s,X)dMη
s η-a.s.

and

(10) σ(t, T )Qt = σ(t, T )Qtσ
†(t,X)σ(t,X) dη⊗ dt − a.e.

Since σ†(s,X)σ(s,X) is an orthogonal projection onto the orthogonal complement of
Kerσ(s,X) (see [23, Section 5.5.4]),

(11) (10) ⇐⇒ QsKer
(
σ(s,X)

)
⊆Ker

(
σ(s,T )

)
.

3We thank Y. Jiang for the sufficiency part of this theorem.
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Fσ,b

R
σ,b
z

Fσ,b

×
Wd

Wd

π ×
Wd

Wd

T ∈ Tbc
(
Wd,Wd

)

FIG 2. Any bicausal Monge transport π ∈ Tbc(µ
σ,b
z , µ

σ,b
z ) can be constructed by pushing µ

σ,b
z along R

σ,b
z , then

T and finally, Fσ,b.

PROOF OF (11). Let Ps := σ†(s,X)σ(s,X). Then,

σ(s,T )Qs = σ(s,T )QsPs + σ(s,T )Qs(Idd − Ps).

Hence, (10) ⇐⇒ σ(s,T )Qs(Idd − Ps) = 0. Since Idd−Ps is the orthogonal projection onto
Kerσ(s,X), the statement follows.

Equation (10) enables one to identify situations where bicausal Monge maps cannot exist:

COROLLARY 3.2. Under the assumptions of Theorem 3.3 , if for all s ∈ [0,1],

max
ω∈Wd

dim(Ker
(
σ(s,ω)

)
)< min

ω∈Wd
dim(Ker

(
σ(s,ω)

)
),

there exists no bicausal Monge transport from µσ,bz to µσ,bz .

The bicausal Monge transports which leave the Wiener measure invariant are exactly
(causal) local orthogonal transformations, which reflect the local gauge symmetry of the
Wiener measure:

COROLLARY 3.3 (Bicausal Monge transports between Wiener measures). The set of all
bicausal Monge transports from Wd to Wd is given by

Tbc(Wd,Wd) = (

{∫ ·

0
QsdXs, Q : [0,1]×Wd 7→ Od is (HWd

t )t∈[0,1]-progressively measurable
}
.

More generally, if σ is invertible, then σ†(t,X) = σ−1(t,X) and (10) holds. In this case
we have a complete description of the structure of bicausal Monge transports between µb,σ

and µb,σ (see Figure 2):

COROLLARY 3.4 (Bicausal Monge transport between strong solutions of SDEs). Assume
the SDEs (5) and (6) have strong solutions satisfying pathwise uniqueness, given by the Ito
maps F σ,b : (Wd,F1)→ (Wd,F1) (resp. F σ,b). If σ(t,ω) is invertible for all (t,ω), then the
set of all bicausal Monge transports from µσ,bz to µσ,bz is{

F σ,b ◦ T ◦Rσ,b
z , T ∈ Tbc(Wd,Wd)

}
,

where Rσ,b
z :Wd →Wd is defined by

Rσ,b
z (X) =

∫ ·

0
σ−1(s,X)dMs µσ,bz − a.s. and M· :=X· − z −

∫ ·

0
b(s,X)ds.
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PROOF. Let η := µσ,bz and (F̃t)t∈[0,1] be the right-continuous version of the filtration
generated by Rσ,b

z = ((Rσ,b
z )t)t∈[0,1], where (Rσ,b

z )t :=
∫ t
0 σ

−1(s,X)dMs. We claim that
(F̃η

t )t∈[0,1] =
(
Hη

t

)
t∈[0,1]. It is clear that F̃η

t ⊆Hη
t for all t ∈ [0,1]. To see the converse, note

that ((Rσ,b
z )t)t∈[0,1] is a (F̃η

t )t∈[0,1]-Brownian motion by Lévy’s characterization of Brownian
motion. Furthermore, by definition of ((Rσ,b

z )t)t∈[0,1] and (7), we have

Xt = z +

∫ t

0
b(s,X)ds+

∫ t

0
σ(s,X)d(Rσ,b

z )s, t ∈ [0,1] η-a.s..

By pathwise uniqueness, X must be adapted to the filtration generated by Brownian motion
Rσ,b

z so that Hη
t ⊆ F̃η

t for all t ∈ [0,1].
Let T̂ be a bicausal Monge map from µσ,bz to µσ,bz . Then, by Theorem 3.3, there ex-

ists some (Hη
t )t∈[0,1]-progressively measurable Od-valued process (Qt)t∈[0,1] such that (9)

and (10) holds and by pathwise uniqueness, it is clear that T̂ = F σ,b(
∫ t
0 Qsd(R

σ,b
z )s).

But since (F̃η
t )t∈[0,1] = (Hη

t )t∈[0,1], then there exists a (HWd

t )t∈[0,1]-progressively measur-
able Od-valued process (Q̃t) such that Q̃t ◦ Rσ,b = Qt η-a.s. for all t ∈ [0,1]. The map
X 7→ T (X) :=

∫ ·
0 Q̃sdXs is a bicausal Monge map from Wd to Wd by Corollary 3.3 and

it can be readily verified that η-a.s. T (Rσ,b
z ) =

∫ ·
0Qsd(R

σ,b
z )s. Hence, T̂ = F σ,b(T (Rσ,b

z )) as
required.

Finally, since (10) is satisfied, for any T ∈ Tbc(Wd,Wd), the map F σ,b(T (Rσ,b
z )) is a

bicausal Monge map from µσ,bz to µσ,bz using Theorem 3.3.

Corollary 3.4 is the case where Ker
(
σ(s,X)

)
= {0} ⊆Ker

(
σ(s,T )

)
so that (10) is always

satisfied, while Corollary 3.2 is the case where (10) is never satisfied. One can construct
intermediate situations via conditions on the diffusion coefficient σ. For example,

COROLLARY 3.5. Let σ,σ ∈ A d,d be such that for all t ∈ [0,1], ω,ω′ ∈Wd,∣∣∣σ(t,ω)− σ
(
t,ω′)∣∣∣≤ L

∥∥ω− ω′∥∥
∞ and

∫ 1

0

∣∣σ(s,0)∣∣2ds <∞.

for some L> 0. If Ker(σ) is deterministic and for all s ∈ [0,1],

max
ω∈E

dim
(
Ker

(
σ(s,ω)

))
≤ dim

(
Ker(σ)(s)

)
,

there exists a bicausal Monge transport from µσ,0z to µσ,0z .

PROOF. We construct an Od-valued process (Qt)t∈[0,1] such that for all s ∈ [0,1], ω ∈Wd,

QsKer
(
σ(s,ω)

)
⊆ Ker

(
σ(s)

)
so that (10) holds. Let m(s) := dim(Ker

(
σ(s)

)
) and m(s,ω) := dim(Ker

(
σ(s,ω)

)
) so that

m ≤m. Letting σ = UΣV
∗ be the singular value decomposition (SVD) of σ, we see that

for fixed s ∈ [0,1], d − m = max
{
k : Σkk > 0

}
(without loss of generality, the diagonal

entries of Σ are assumed to be decreasing). Hence, writing v∗i as the ith-column of V ∗ and
α := d−m, then Ker

(
σ(s,ω)

)
= Span(

{
v∗i
}d
i=α+1

). Since Ker
(
σ(s,ω)

)
is deterministic, up

to replacing the last m columns of V ∗, we assume that
{
v∗i
}d
i=α+1

are vectors depending
on time, but not on ω. Hence, let O∗

s be any time-dependent orthogonal matrix whose last
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m columns are
{
v∗i
}d
i=α+1

. Letting σ = UΣV ∗ be the SVD of σ, one easily verifies that
Q(s,ω) := O

∗
sV (s,ω) is the desired Q noting that the kernel of σ(s,ω) is given by the last

m vectors of V ∗
s . Picard iteration applied to (9) yields the existence of a bicausal Monge

transport.

3.4. Proof of Theorem 3.2 and 3.3.

3.4.1. Martingale Representation Theorem. A crucial ingredient in the proof of our re-
sults is a martingale representation property [36, Theorem 2] applicable to SDEs with unique
weak solutions (see also [13, Ch. 7]).

PROPOSITION 3.1. On
(
Wd,F1,

(
Hη

t

)
t∈[0,1], η

)
, where η := µσ,bz , we have that for any

F ∈ L2(η,F1), there exists a
(
Hη

t

)
t∈[0,1]-progressively measurable process ξ : [0,1]×Wd →

Rd such that

Eη

(∫ 1

0
∥ξs∥2Rd ds

)
<∞

and

F =

∫ 1

0
(ξs, dLs)Rd =

∫ 1

0

d∑
i=1

ξisdL
i
s η-a.s.,

whereL· =
∫ ·
0 σ

†(s,X)dMη
s . In particular, any square-integrable (η,

(
Hη

t

)
t∈[0,1])-martingale

(Mt)t∈[0,1] has representation

Mt =

∫ t

0

d∑
i=1

ξisdL
i
s, ∀t ∈ [0,1] η-a.s..

PROOF. Consider the filtered probability space(
Ω,G, (Gt)t∈[0,1],P

)
:=
(
Wd ×Wd,F1 ⊗F1, (Pη⊗Wd

t )t∈[0,1], η⊗Wd
)
,

using the notation in (3). Since X#P = η, we can identify L2(η,F1) with L2(P,F1 ⊗
{∅,Wd}) by the Doob-Dynkin lemma (see [26]) and we no longer distinguish these spaces. It
is straightforward to verify that P ∈Πbc(η,Wd). (7) and Theorem 2.2 implies that (Xt)t∈[0,1]

is a (P, (Gt))-semimartingale such that
(
Xt − z −

∫ t
0 b(s,X)ds

)
t∈[0,1]

is a (P, (Gt))-local

martingale and

∀t ∈ [0,1], [X,X]t =

∫ t

0
σ(s,X)σ∗(s,X)ds P-a.s.

and (Yt)t∈[0,1] is a (P, (Gt))-Brownian motion independent from (Xt)t∈[0,1]. Following the
proof of [25, Theorem 7.1′], we define

(12) Bt :=

∫ t

0
σ†(s,X)dMs +

∫ t

0
(Idd − σ†(s,X)σ(s,X))dYs,

where Mt := Xt − z −
∫ t
0 b(s,X)ds. Then, (Bt)t∈[0,1] is a (P, (Gt))-Brownian motion by

Lévy’s characterization of Brownian motion and Mt =
∫ t
0 σ(s,X)dBs for all t ∈ [0,1] P-a.s..
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That is, the pair (X,B) satisfies SDE (5). Since σ†(s,X)σ(s,X) is an orthogonal projection
onto the range of σ∗(s,X) (see [23, Section 5.5.4]), we have by [36, Theorem 2] that for any
F ∈ L2(η,F1), there exists a (Hη

t ⊗ {∅,Wd})t∈[0,1]-progressively measurable process (ξt)
such that

EP

(∫ 1

0
∥ξs∥2Rd ds

)
<∞

and

F =

∫ 1

0

(
ξs, σ

†(s,X)σ(s,X)dBs

)
Rd

P-a.s..

Using (12), one can verify σ†(s,X)σ(s,X)dBs = σ†(s,X)dMs, from which we obtain the
desired result.

3.4.2. Technical proofs.

PROOF OF THEOREM 3.2. Denote η := µσ,bz and ν := µσ,bz . We first prove sufficiency,
that is, π = (Z,Z)#P ∈Πbc(η, ν). By Assumption 1, it is clear π ∈Π(η, ν) and it remains to
show bicausality of π. Define Pπ

t as in (3). We begin by verifying thatX is a (π, (Pπ
t )t∈[0,1])-

semimartingale, for which it is enough to show that Mt := Xt − z −
∫ t
0 b(s,X)ds is a

(π, (Pπ
t )t∈[0,1])-local martingale. Up to localization, we may assume (Mt)t∈[0,1] is bounded.

Since Z−1(Ht) = ∩ϵ>0FZ
t+ϵ, where (FZ

t )t∈[0,1] is the filtration generated by (Zt)t∈[0,1],
and (Gt)t∈[0,1] is right-continuous by assumption, it follows that Z−1(Ht) ⊆ Gt. Simi-

larly, Z−1
(Ht) ⊆ Gt. Hence, we calculate for 0 ≤ s < t ≤ 1, A,B ∈ Hs and (ω,ω′) 7→

1A×B(ω,ω
′),

Eπ(Mt1A×B) = EP(

∫ t

0
σ(u,Zu)dBu1Z−1(A)∩Z−1

(B)
)

= EP
(∫ s

0
σ(u,Zu)dBu1Z−1(A)∩Z−1

(B)

)
= Eπ(Ms1A×B)

since
∫ ·
0 σ(u,Zu)dBu is a (P, (Gt))-martingale. This shows that (Mt)t∈[0,1] is a (π, (Ht ⊗Ht))-

martingale and even a (π, (Pπ
t )t∈[0,1])-martingale by continuity of sample paths and [34,

Lemma 67.10]. By the stochastic integral representation of elements in M2(π, (Hη
t ⊗

{∅,Wd})) from Proposition 3.1 and Theorem 2.2, we conclude π ∈Πc(η, ν). A completely
symmetric argument yields π ∈Πbc(η, ν) as required.

To see necessity, let π ∈ Πbc(η, ν). By Theorem 2.2, X and Y are (π, (Pπ
t )t∈[0,1])-

semimartingales. Up to enlarging the probability space, we assume that there exists a Brow-
nian motion B̂ independent from X and Y . It is easy to check that X,Y and B̂ remain
semimartingales with respect to probability measure π and the (complete, right-continuous)
filtration generated by all three processes, denoted (Gt). As in the proof of Proposition 3.1,
we construct (Gt)-Brownian motions

Bt :=

∫ t

0
σ†(s,X)dMs +

∫ t

0
(Idd − σ†(s,X)σ(s,X))dB̂s,

Bt :=

∫ t

0
σ†(s,Y )dNs +

∫ t

0
(Idd − σ†(s,Y )σ(s,Y ))dB̂s,
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whereNt := Yt−z−
∫ t
0 b(s,Y )ds. Noting thatMt =

∫ t
0 σ(s,X)dBs andNt =

∫ t
0 σ(s,Y )dBs

yields the desired.
The final assertion regarding the correlation process ρ is exactly [18, Lemma 5].

To prove Theorem 3.3, we require the following generalization of [28, Proposition 4].

LEMMA 3.4. Under the assumptions of Theorem 3.3, a measurable map T : Wd →
Wd from η to ν, i.e. T#η = ν, is a bicausal Monge map if and only if (Tt)t∈[0,1] is a
(η,
(
Hη

t

)
t∈[0,1])-semimartingale.

PROOF. Suppose T is a bicausal Monge map from η to ν, i.e. πT := (X·, T )#η ∈
Πbc(η, ν). Causality readily implies that (Tt)t∈[0,1] is (Hη

t )t∈[0,1]-adapted. Since T has law

µσ,bz , then (Tt)t∈[0,1] is a semimartingale with respect to probability measure η and its own

filtration, with martingale part Nt := Tt−z−
∫ t
0 b(s,T )ds. Up to standard localization meth-

ods, we assume (Nt)t∈[0,1] is bounded. Bicausality implies that (Nt)t∈[0,1] is a (η,
(
Hη

t

)
)-

martingale, which implies the desired. Indeed, for 0≤ s≤ t≤ 1 and A ∈Hs, we have

(13) Eη(Nt1A) = EπT ((Yt − z −
∫ t

0
b(u,Y )du)1A×Wd)

= EπT ((Ys − z −
∫ s

0
b(u,Y )du)1A×Wd) = Eη(Ns1A),

where we have used causality of R#πT ∈Πc(ν, η) and Theorem 2.2 in the second equality.
Conversely, if (Tt)t∈[0,1] is a (η,

(
Hη

t

)
)-semimartingale, then it is (Hη

t )t∈[0,1]-adapted so
that πT ∈Πc(η, ν). Furthermore, it holds that the first and last term in (13) is equal, so that the
second and third term are equal and (Yt)t∈[0,1] is a (η, (PπT

t )t∈[0,1]) -semimartingale. By the
stochastic integral representation of elements in M2(πT , ({∅,Wd}⊗Hη

t )) from Proposition
3.1 and Theorem 2.2, we conclude πT ∈Πbc(η, ν).

PROOF OF THEOREM 3.3. We start with sufficiency. Suppose T is a measurable map
such that (Tt)t∈[0,1] is a (η, (Hη

t ))-semimartingale satisfying (9) and (10). By Lemma 3.4,
it is sufficient to show that T#η = ν. As in the proof of Proposition 3.1, up to enlarg-
ing the probability space (Wd,F1, η), there exists some Brownian motion B such that∫ ·
0 σ

†(s,X)dMη
s =

∫ ·
0 σ

†(s,X)σ(s,X)dBs. Hence, (9) and (10) implies η-a.s.

Tt = z +

∫ t

0
b(s,T )ds+

∫ t

0
σ(s,T )Qsσ

†(s,X)σ(s,X)dBs

= z +

∫ t

0
b(s,T )ds+

∫ t

0
σ(s,T )QsdBs.

Since
∫ ·
0QsdBs is a Brownian motion, the law of T is indeed ν by weak uniqueness.

For necessity, if T is a bicausal Monge map from η to ν, then by Lemma 3.4, we have
that (Tt)t∈[0,1] is a (η,

(
Hη

t

)
)-semimartingale with martingale part (Nt)t∈[0,1] where Nt :=

Tt −
∫ t
0 b(s,T )ds− z and η-a.s.

[T ]t =

∫ t

0
σ(s,T )σ∗(s,T )ds for t ∈ [0,1].
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On the other hand, standard localization procedures and Proposition 3.1 yields a (Hη
t )t∈[0,1]-

progressively measurable process H : [0,1]×Wd →Rd×d such that for t ∈ [0,1], η-a.s.

(14) Nt =

∫ t

0
Hsσ

†(s,X)dMη
s

with quadratic variation

[T ]t = [N ]t =

∫ t

0

(
Hsσ

†(s,X)σ(s,X)
)(
Hsσ

†(s,X)σ(s,X)
)∗
ds η-a.s..

Hence, we obtain the η-a.s. equality∫ t

0

(
Hsσ

†(s,X)σ(s,X)
)(
Hsσ

†(s,X)σ(s,X)
)∗
ds=

∫ t

0
σ(s,T )σ∗(s,T )ds.

By Lebesgue Differentiation Theorem, we obtain that η-a.s. on a set of full Lebesgue measure

(Hsσ
†(s,X)σ(s,X))(Hsσ

†(s,X)σ(s,X))∗ = σ(s,T )σ∗(s,T ).

By polar decomposition, this implies the existence of some
(
Hη

t

)
t∈[0,1]-progressively mea-

surable4 Q : [0,1]×Wd →Od such that η-a.s. on a set of full Lebesgue measure, we have

Hsσ
†(s,X)σ(s,X) = σ(s,T )Qs =⇒ Hsσ

†(s,X) = σ(s,T )Qsσ
†(s,X)

and σ(s,T )Qs = σ(s,T )Qsσ
†(s,X)σ(s,X),

from which we obtain the desired using (14).

4. Applications.

4.1. Bicausal couplings induced by Monge maps. While Theorem 3.3 gives us necessary
and sufficient conditions for a measurable map T to be a bicausal Monge transport, it does
not tell us when a bicausal transport plan is induced by a bicausal Monge map. We will now
show that whether a bicausal coupling is induced by a Monge map depends on the existence
of a strong solution to an associated SDE (15).

In light of Corollary 3.1, we first study the case of bicausal Monge transport between
Wiener measures:

PROPOSITION 4.1 (Bicausal Monge transport between Wiener measures). Let π ∈
Πbc(Wd,Wd) and ρ : [0,1]×Wd ×Wd →Cd be the (Pπ

t )t∈[0,1] -progressively measurable
correlation process of X,Y under π:

ρ(t,X,Y ) =
d[X,Y ]

dt
, π− a.s..

1. If ρ is an Od-valued adapted process and there exists a strong, pathwise unique solution
to the SDE

(15) d

(
Z
Z

)
t

=

(
Idd

ρ(t,Z,Z)

)
dBt,

(
Z0

Z0

)
= 0,

then π ∈ Tbc(Wd,Wd).

4To see progressively measurability of Q, one can show that polar decomposition can be done in a measurable
way following [3].
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2. If π is induced by a bicausal Monge map T , then ρ is Od-valued and there exists a strong
solution to (15).

REMARK 4 (Measurability of the correlation process). A priori, for π ∈ Πbc(Wd,Wd),
the marginal processes X and Y will be (π, (Pπ

t )t∈[0,1])-Brownian motions and hence,
ρ, constructed via the Lebesgue differentiation of the quadratic covariation [X,Y ], will
be (Pπ

t )t∈[0,1]-progressively measurable. Yet, in (15), we consider ρ as a component of
a diffusion coefficient of an SDE, which one usually assumes to be (Ft ⊗Ft)t∈[0,1] -
progressively measurable. Fortunately, one can always find some ρ̃ : [0,1]×Wd×Wd →Cd

π-indistinguishable from ρ that is (Ft ⊗Ft)t∈[0,1]-progressively measurable by using the
fact that the completion of the canonical filtration of a Brownian motion is always right-
continuous and [24, Theorem 4.37.3].

PROOF. i. : Under π, X and Y are (Pπ
t )t∈[0,1]-Brownian motions such that [X,Y ] =∫ ·

0 ρ(s,X,Y )ds by Theorem 2.2. Using the fact that ρ is Od-valued, a direct calculations
shows that [

∫ ·
0 ρ(s,X,Y )dXs − Y ]· ≡ 0 and hence, Yt =

∫ t
0 ρ(s,X,Y )dXs π-a.s. for all t ∈

[0,1]. In other words, (X,Y ) is a solution to (15). By pathwise uniqueness, it follows that Y
must be adapted to X and hence, π ∈ Tbc(Wd,Wd).
ii. : Since π is induced by a bicausal Monge map, then Corollary 3.3 implies that ρ must

be Od-valued and as before, we again have Yt =
∫ t
0 ρ(s,X,Y )dXs π-a.s.. Hence,

Tt =

∫ t

0
ρ(s,X,T )dXs, Wd-a.s.

and (Tt)t∈[0,1] is adapted to (HWd

t )t∈[0,1] - the filtration of Brownian motionX , which implies
the existence of a strong solution given by (X·, T ).

REMARK 5. The preceding proposition almost gives a complete characterization of the
set Tbc(Wd,Wd) in terms of the existence of strong solutions to (15). However, at present, the
hypothesis of ii. seems insufficient to guarantee a pathwise unique strong solution to (15). If
we were to assume the hypothesis of ii. and in addition, assume the weak uniqueness of (15),
then the existence of a strong solution along with weak uniqueness implies the existence of
strong, pathwise unique solution by a result of A. S. Cherny [12, Theorem 3.2]. This holds
for example

1. when ρ is only a function of X and t, so that weak uniqueness of the SDE is trivial;
2. or when ρ is only a function of Y and t. Indeed, any solutions to the SDE

dZt = ρ(t,Z,Z)dBt = ρ(t,Z)dBt

will always have law given by Wd since ρ ∈Od. Hence, the preceding SDE has a unique
weak solution and, by [12, Theorem 3.1], the joint law of (Z,B) is the unique weak
solution of (15).

Finally, we note that if γ ∈Πbc(Wd,Wd) is such that ρ(X,Y, t) = 1{Yt>0}−1{Yt≤0}, then
(15) reduces to the well-known Tanaka’s SDE from which we see that there cannot exist a
strong solution. Hence, γ cannot be induced by a bicausal Monge transport.

For bicausal couplings between laws of SDEs with strong, pathwise unique solutions, we
have the following corollary under the same assumptions as in Corollary 3.4:
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COROLLARY 4.1. Assume the SDEs (5) and (6) have strong solutions satisfying pathwise
uniqueness, given by the Ito maps F σ,b : (Wd,F1) → (Wd,F1) (resp. F σ,b) and fix π ∈
Πbc(µ

σ,b
z , µσ,bz ). By Corollary 3.1, there exists π̂ ∈Πbc(Wd,Wd) such that

π =
(
F σ,b, F σ,b

)
#
π̂.

If σ(t,ω) and σ(t,ω) are invertible for all (t,ω) ∈ [0,1]×Wd, then

π ∈ Tbc(µσ,bz , µσ,bz ) ⇐⇒ π̂ ∈ Tbc(Wd,Wd).

PROOF. It is easy to verify that Wd-a.s. Rσ,b
z ◦ F σ,b = X· and by pathwise unique-

ness, µσ,bz -a.s. F σ,b ◦ Rσ,b
z = X . In particular, (Rσ,b

z ,Rσ,b
z )#π = π̂. Suppose now that π̂ ∈

Tbc(Wd,Wd), i.e. there exist some measurable T : Wd → Wd such that (X·, T )#Wd = π̂.
Then,

π =
(
F σ,b, F σ,b

)
#
π̂ =

(
F σ,b, F σ,b

)
#
(X·, T )#W

d

=
(
F σ,b, F σ,b ◦ T

)
#

(
Rσ,b

z

)
#
µσ,bz =

(
X·, F

σ,b ◦ T ◦Rσ,b
z

)
#
µσ,bz .

Corollary 3.4 gives that F σ,b
z̃ ◦ T ◦Rσ,b

z ∈ Tbc(µσ,bz , µσ,bz ). Similar relations hold for Rσ,b
z and

F σ,b if σ(s,ω) is non-singular. Conversely, if π ∈ Tbc(µσ,bz , µσ,bz ), i.e. π = (X·, T̂ )#µ
σ,b
z for

some measurable T̂ , then π̂ = (X·,R
σ,b
z ◦ T̂ ◦ F σ,b)#Wd ∈ Tbc(Wd,Wd).

4.2. Denseness of bicausal Monge maps among bicausal couplings. We establish condi-
tions under which couplings induced by bicausal Monge maps are dense in the space of bi-
causal couplings. We first show that Tbc(Wd,Wd) is dense in Πbc(Wd,Wd) for the topology
of weak convergence of probability measures before moving on to the general case. We use
the result of M. Émery [18, Proposition 2], which showed that the set of “mutually adapted
Brownian motions" is dense in the set of “jointly immersed Brownian motions", which is
exactly equal to Πbc(Wd,Wd) in light of Theorem 3.2.

PROPOSITION 4.2. Tbc(Wd,Wd) is dense in Πbc(Wd,Wd) for the topology of weak con-
vergence of probability measures.

PROOF. By [18, Proposition 2], given any π ∈ Πbc(Wd,Wd), there exists Brownian mo-
tions Xn and Y n on some abstract filtered probability space (Ω,G, (Gt)t∈[0,1],P) such that
for each fixed n, Xn and Y n generate the same filtration and the law of (Xn, Y n) weakly
converges to π as n tends to infinity. SinceXn and Y n generate the same filtration, then there
exists some Tn :Wd →Wd such that Tn(Xn) = Y n P-a.s. and Y n is a Brownian motion
with respect to the filtration generated by Xn. Since Y n is a Brownian motion, it is easy
to see that Tn

#Law(Xn) = Tn
#Wd =Wd. Lemma 3.4 gives that Tn ∈ Tbc(Wd,Wd) and that

Law(Xn, Y n) = (X·, T
n)#Wd weakly converges to π.

REMARK 6. A longer, but more explicit proof may be obtained along the lines of the
proof of [18, Proposition 2] where Y n is constructed explicitly as a stochastic integral against
Xn of an Od-valued process, in agreement with Corollary 3.3.

In fact, the smaller set of bijective bicausal Monge transports in also dense subset of bi-
causal couplings:



18

PROPOSITION 4.3. Tbcb(Wd,Wd) is dense in Πbc(Wd,Wd) for the topology of weak
convergence of probability measures.

PROOF. In the proof of Proposition 4.2, since Xn and Y n generate the same filtration (see
[18, Proposition 2]), the role of Xn and Y n are completely symmetric, i.e. there exists some
T̂n : Wd → Wd such that T̂n(Y n) = Xn P-a.s. and T̂n ∈ Tbc(Wd,Wd). It then holds that
Xn = T̂n ◦Tn(Xn) P-a.s.. In other words, T̂n ◦Tn =X· Wd-a.s.. A similar statement holds
for Tn ◦ T̂n.

We now transfer this density result between couplings of Wiener measures to the density
of Tbc(µσ,bz , µσ,bz ) in Πbc(µ

σ,b
z , µσ,bz ) using the following abstract lemma:

LEMMA 4.1. Let η, ν ∈ P(Wd) and sets Λ,Υ ⊆ P(Wd ×Wd) be such that Υ ⊆ Λ ⊆
Π(η, ν), Λ is closed and Υ is dense in Λ. For any measurable F,F :Wd →Wd,

(F,F )#Λ := {(F,F )#π : π ∈ Λ} is closed

and

{(F,F )#π : π ∈Υ} is dense in (F,F )#Λ,

where (F,F )#π designates the image of the measure π under the map

(X,Y ) ∈Wd ×Wd 7→ (F (X), F (Y )).

Note that the lemma is easily seen to be true if F,F are assumed continuous since
Π(η, ν) ∋ π 7→ (F,F )#π will be a continuous function over a compact set. For F,F mea-
surable, one can enlarge the topology on Wd without changing the Borel σ-algebra such that
F is continuous by [27, Theorem 13.11]. By [9, Lemma 2.5], the topology of weak conver-
gence of probability measures on Π(η, ν) remains unchanged and we can safely conclude the
lemma. We provide a more elementary and self-contained proof below relying only on Tietze
extension theorem and Lusin’s theorem.

PROOF. We first show that (F,F )#Λ is closed. Let (πn)n≥0 ⊆Λ be a sequence of proba-
bility measures such that ((F,F )#πn)n≥0 converges to some ξ ∈ P(Wd ×Wd). Since Λ is
closed in compact Π(η, ν), up to a subsequence, we can assume that πn converges to some
π ∈Π(η, ν). We now show that ξ = (F,F )#π. Fix a continuous, bounded f :Wd ×Wd →
R and some ϵ > 0. By Lusin’s theorem, there exists closed sets K,J ⊆ Wd such that
η(Kc), ν(Jc) < ϵ and F |K , F |J is continuous. By Tiezte extension theorem [15, Theorem
4.1], there exist continuous G,G :Wd →Wd such that F |K = G|K and F |J = G|J . Note
that

sup
π∈Π(η,ν)

|Eπ(f(F,F )− f(G,G))| ≤ 2C sup
π∈Π(η,ν)

Eπ
1(K×K)c ≤ 4Cϵ,

where C := supω,ω′ |f(ω,ω′)|. Hence, we calculate

|Eξf −Eπf(F,F )| ≤|Eξf −Eπnf(F,F )|+ |Eπn(f(F,F )− f(G,G))|

+ |Eπnf(G,G)−Eπf(G,G)|+ |Eπ(f(G,G)− f(F,F ))|

≤|Eξf −E(F,F )#πnf |+ |Eπnf(G,G)−Eπf(G,G)|+ 8Cϵ.

Taking n→∞ and ϵ→ 0, we conclude Eξf = E(F,F )#πf for all continuous, bounded f and
hence, ξ = (F,F )#π as desired.
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To see density of {(F,F )#π : π ∈ Υ} in (F,F )#Λ, fix π ∈ Λ. We wish to show there
exists a sequence (πn)n≥0 ⊆ Υ such that (F,F )#πn converges weakly to (F,F )#π. Since
Υ is dense in Λ, there exists a sequence (πn)n≥0 weakly converging to π. Furthermore, since
((F,F )#πn)n≥0 ⊆ (F,F )#Λ⊆Πbc(F#η,F#ν), up to a subsequence, we can conclude that
(F,F )#πn converges to some ξ ∈ P(Wd ×Wd) as well. By the same argument as in the
previous step, we can conclude ξ = (F,F )#π, which implies the desired.

PROPOSITION 4.4. Assume the SDEs (5) and (6) have strong solutions satisfying path-
wise uniqueness. If σ(s,ω) is invertible for all (s,ω), then Tbc(µσ,bz , µσ,bz ) is dense in

Πbc(µ
σ,b
z , µσ,bz ) for the topology of weak convergence of probability measures.

PROOF. Denote by F = F σ,b, F = F σ,b the Ito maps for the SDEs (5) and (6),
Γ = Tbc(Wd,Wd) and Λ = Πbc(Wd,Wd). By applying Lemma 4.1, we conclude that
(F σ,b, F σ,b)#Tbc(Wd,Wd) is dense in Πbc(µ

σ,b
z , µσ,bz ) since Γ is dense in Λ by Proposition

4.2 and (F σ,b, F σ,b)#Πbc(Wd,Wd) = Πbc(µ
σ,b
z , µσ,bz ) by Corollary 3.1. Hence, it suffices

to show that (F σ,b, F σ,b)#Tbc(Wd,Wd) ⊆ Tbc(µσ,bz , µσ,bz ). This follows from Corollary 3.4
since using the fact that F σ,b ◦Rσ,b

z = Id µσ,bz -a.s., we have, for any T ∈ Tbc(Wd,Wd),

(F σ,b, F σ,b)#(Id, T )#Wd = (F σ,b, F σ,b)#(Id, T )#(Rσ,b
z )#µ

σ,b
z = (Id, F σ,b◦T ◦Rσ,b

z )#µ
σ,b
z .

PROPOSITION 4.5. Under the assumptions of Proposition 4.4, if σ(s,ω) and σ(s,ω) are
invertible for all (s,ω), then Tbcb(µσ,bz , µσ,bz ) is dense in Πbc(µ

σ,b
z , µσ,bz ) for the topology of

weak convergence of probability measures.

PROOF. We repeat the proof of Proposition 4.4 with the use of Proposition 4.2 replaced by
Proposition 4.3. We only need to check that if T̂ ∈ Tbcb(Wd,Wd), then T := F σ,b ◦ T̂ ◦Rσ,b

z ∈
Tbcb(µσ,bz , µσ,bz ). Let Ŝ : Wd → Wd be such that Ŝ ∈ Tbc(Wd,Wd) and Wd-a.s. T̂ ◦ Ŝ =

Ŝ ◦ T̂ = X·. It is straightforward to verify that S := F σ,b ◦ Ŝ ◦ Rσ,b
z satisfies T ◦ S = X·

µσ,bz -a.s. and S ◦ T =X· µ
σ,b
z -a.s. as required.

4.3. Equivalence of bicausal Monge and Kantorovich optimal transport. Given some
cost c :Wd ×Wd →R≥0 ∪ {+∞}, we define

1. the bicausal Monge transport problem:

(BMP) M(η, ν) := inf
π∈Tbc(η,ν)

∫
Wd×Wd

c(ω,ω′)dπ(ω,ω′) = inf
π∈Tbc(η,ν)

Eπ(c).

2. the bicausal Kantorovich transport problem:

(BKP) K(η, ν) := inf
π∈Πbc(η,ν)

∫
Wd×Wd

c(ω,ω′)dπ(ω,ω′) = inf
π∈Πbc(η,ν)

Eπ(c),

Since Tbc(η, ν)⊆Πbc(η, ν), we have K(η, ν)≤M(η, ν). We can derive sufficient condi-
tions for equality in light of Proposition 4.4:
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COROLLARY 4.2. Under the assumptions of Proposition 4.4, if c : Wd × Wd → R≥0

is continuous and
∣∣c(ω,ω′)

∣∣ ≤ ∣∣ϕ(ω)∣∣ + ∣∣ψ(ω′)
∣∣ for some ϕ ∈ L1(µσ,bz ,F1) and ψ ∈

L1(µσ,bz ,F1), then the bicausal Monge and Kantorovich problems have the same value:

K(µσ,bz , µσ,bz ) =M(µσ,bz , µσ,bz ).

This proof of this corollary is an adaptation of [30, Lemma 5.14] with minor changes, and
is, hence, omitted.

4.4. Examples. A striking result, due to Lassalle [28], states that when c is the Cameron-
Martin norm, the value of (BKP)-(BMP) may be computed explicitly and is given by the
relative entropy.

We derive in this section other examples of explicit solutions to (BKP)-(BMP), in the case
where one of the probability measures is the law of an SDE which has invertible diffusion
coefficient and the other is the law of an SDE which has a deterministic drift coefficient and
almost deterministic diffusion coefficient in a sense to be made precise later. In particular, we
highlight how one cannot expect uniqueness of the optimal bicausal transport.

When η and ν are weak solutions of SDEs, for any π ∈ Πbc(η, ν), marginal processes
(Xt)t∈[0,1] and (Yt)t∈[0,1] are (π, (Pπ

t )t∈[0,1])-semimartingales by Theorem 2.2. Inspired by
[5, Proposition 3.3], we will consider costs that have separate dependence on the martingale
and finite variation parts of X and Y . Writing

X =Mη + V η, Y =Mν + V ν

the semimartingale decomposition ofX (resp. Y ) into its martingale and finite variation parts
under η (resp. ν) we consider a transport cost c given by

(16) c(X,Y ) := h(V η − V ν) + g(tr
(
[Mη −Mν ]1

)
),

with h :Wd →R≥0 ∪ {+∞} measurable and g :R→R≥0 ∪ {+∞} monotone increasing.

PROPOSITION 4.6. Let σ ∈ A d,d, b ∈ A d,1 be such that the SDE

(17) dXt = b(t,X)dt+ σ(t,X)dBt, X0 = 0,

has a unique weak solution η := µσ,b0 , where σ(t,ω) is invertible for all (t,ω).
Let σ ∈ A d,d be such that σ(t,ω) = κ(t)u(t,ω) with u(t,ω) ∈Od and assume the SDE

(18) dYt = b(t)dt+ σ(t, Y )dBt, Y0 = 0,

has a unique, strong solution with law ν := µσ,b0 . Denote by F σ,b
0 : Wd → Wd. the corre-

sponding Itô map Then an optimal transport from η to ν for a cost of the form (16) is given
by the bicausal Monge map

Wd ∋ ω 7→ T (ω) := F
√
σσ∗,b

0

(∫ ·

0
Qsσ

−1(s,X)dMη(s)

)
where Q : [0,1] × Wd → Od is a (Hη

t )t∈[0,1]-progressively measurable process given by
Qt(ω) =Q(t,ω) := V (t,ω)U∗(t,ω) for U(t,ω), V (t,ω) ∈Od appearing in the SVD of ma-
trix σ(s,ω)

√
σσ∗(s). In particular,

K(η, ν) =M(η, ν) = Eη

(
h

(∫ ·

0
b(s,X)ds−

∫ ·

0
b(s)ds

))
+

Eη

g(∫ 1

0
tr
(
σ(s,X)σ∗(s,X) + σσ∗(s)

)
ds− 2

∫ 1

0
tr
(
σ(s,X)

√
σσ∗(s)Q(s,X)

)
ds

).
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REMARK 7. As the singular value decomposition is non-unique, the solution to (BMP)-
(BKP) is also in general non-unique. Furthermore, the assumptions of Proposition 4.6 as-
sumes no regularity on the drift/diffusion coefficients and still concludes the equivalence of
the bicausal Kantorovich and Monge problem, which is not covered by Corollary 4.2. In the
case d= 1, σ,σ ≥ 0, h(ω) :=∥ω∥1-var and g(x) := x, the preceding result agrees with that of
[5, Proposition 3.3].

PROOF. By rotation invariance of Brownian motion and weak uniqueness, we can without
loss of generality replace σ(t,ω) by the time-dependent deterministic function ξ : [0,1] →
Rd×d, ξ(t) :=

√
σσ∗(t) =

√
κκ∗(t).

Let π ∈Πbc(η, ν). By Theorem 3.2, there exists some stochastic basis
(
Ω,G, (Gt)t∈[0,1],P

)
and (Gt)-adapted processes B,B,Z and Z satisfying Theorem 3.2. Then

Eπ(c) = EP(c(X − Y )
)
= EP(h(

∫ ·

0
b(s,Z)ds−

∫ ·

0
b(s)ds))+

EP(g(tr

([∫ ·

0
σ(s,Z)dBs −

∫ ·

0
ξ(s)dBs

]
1

)
)).

Setting ρt = d[B,B]/dt ∈ Cd as in Theorem 3.2, we have

tr

([∫ ·

0
σ(s,Z)dBs −

∫ ·

0
ξ(s)dBs

]
1

)

=

∫ 1

0
tr
(
σ(s,Z)σ∗(s,Z) + σσ∗(s)

)
ds− 2

∫ 1

0
tr
(
σ(s,Z)ξ(s)ρs

)
ds

≥
∫ 1

0
tr
(
σ(s,Z)σ∗(s,Z) + σσ∗(s)

)
ds− 2

∫ 1

0
sup
C∈Cd

tr
(
σ(s,Z)ξ(s)C

)
ds

=

∫ 1

0
tr
(
σ(s,Z)σ∗(s,Z) + σσ∗(s)

)
ds− 2

∫ 1

0
sup
C∈Od

tr
(
σ(s,Z)ξ(s)C

)
ds,

where we have used [10, Proposition 4.7] in the last equality. By the same proposition,

sup
C∈Od

tr
(
σ(s,Z)ξ(s)C

)
= tr

(
σ(s,Z)ξ(s)Q(s,Z)

)
,

where Q is defined as in the statement of the proposition. Hence, by monotonicity of g and
temporarily suppressing the arguments of σ and b,

(19) Eπ(c)≥ Eη(h(

∫ ·

0
bds−

∫ ·

0
b(s)ds))

+Eη(g(

∫ 1

0
tr
(
σσ∗ + σσ∗(s)

)
ds− 2

∫ 1

0
tr
(
σξ(s)Q(s,X)

)
ds)).

Since the RHS of (19) no longer depends on π, taking infimum over π ∈ Πbc(η, ν) gives
that (BKP) is lower bounded by the RHS of (19). One easily checks that this lower bound is
achieved by T as defined in the statement of the proposition, which is a bicausal Monge map
by Theorem 3.3.
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One dimensional case The bicausal Kantorovich problem for laws of one-dimensional
SDEs was studied in [7, 33] for a variety of costs and regularity conditions on σ, b, σ and
b. For example, if b, b : R → R and σ,σ : R → R≥0 are Lipschitz-continuous, then by [7,
Theorem 1.3], for any p≥ 1 and c

(
ω,ω′) := ∫ 1

0

∣∣ωs − ω′
s

∣∣pds, an explicit solution to

(20) inf
π∈Πbc(µ

σ,b
0 ,µσ,b

0 )

Eπ(c)

is given by the so-called synchronous coupling π∗ := (F σ,b, F σ,b)#Wd. In other words, on
some probability space (Ω,F ,P) with Brownian motion B = (Bt)t∈[0,1], we construct so-
lutions to (5) and (6) driven by the common noise B as Z = (Zt)t∈[0,1] := F σ,b(B) and

Z = (Zt)t∈[0,1] = F σ,b(B). Then,

EPc(Z,Z) = EP
∫ 1

0
|Zs −Zs|pds= inf

π∈Πbc(µ
σ,b
0 ,µσ,b

0 )

Eπ(c).

If σ(x) > 0 for all x ∈ R, then by Corollary 3.4, we see that the synchronous coupling is
induced by a Monge map F σ,b ◦Rσ,b,

π∗ = (Id, F σ,b ◦Rσ,b)#µ
σ,b
0

and (BKP) = (BMP) in agreement with Corollary 4.2. The filtration used to define bicausal
couplings in [7] is the canonical one (Ft)t∈[0,1], instead of the right-continuous one used in

this work, (Ht)t∈[0,1]. However, the Lipschitz assumption in this example implies that µσ,b0

and µσ,b0 are laws of strong Markov processes and these two definitions of bicausal couplings
coincide (see [7, Remark 2.3] or Remark 1 ii).
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