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We study properties of causal couplings for probability measures on the
space of continuous functions. We first provide a characterization of bicausal
couplings between weak solutions of stochastic differential equations. We
then provide a complete description of all such bicausal Monge couplings. In
particular, we show that bicausal Monge couplings of d-dimensional Wiener
measures are induced by stochastic integrals of rotation-valued integrands.
As an application, we give necessary and sufficient conditions for bicausal
couplings to be induced by Monge maps and show that such bicausal Monge
transports are dense in the set of bicausal couplings between laws of SDEs.
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1. Optimal transport and its causal counterpart. The theory of optimal transport of
probability measures and the associated Wasserstein metric has been the focus of a large body
of research [2, 31, 32, 37] with rich ramifications across various branches of mathematics
and applications. In the context of stochastic processes, where one deals with probability
measures on filtered spaces, it is natural to incorporate a compatibility condition with the
flow of information, leading to the concept of causal transport [28], defined as a transport
which makes use, at any time ¢, only the information available at . As shown by Lassalle [28],
when the underlying space is the space of trajectories of a stochastic process, the concept of
causal transport has interesting connections with stochastic analysis.

A natural example of causal transport is the one induced by a non-anticipative map. Denote
by W9 := ([0, 1], R?) the space of continuous R?-valued functions on [0, 1], with its canon-
ical filtration (ft)te[o,l]' A map T : W?* — W4 may be naturally interpreted as a R?—valued

functional F': [0, 1] x W9+ F(w,t) := T(w)(t) € RY. Such a functional is said to be causal
or non-anticipative [14, 21] if F(w,t) depends on the path w only through its values on [0, ¢]:

F(w,t) = F(w(-At),t), where s At := min{s, t}.

The causality of F' is equivalent to T~ (F;) C F; for all ¢t € [0, 1]. Any probability measure 7
on W*, is thus transported in a causal manner, i.e. non-anticipative with respect the filtration,
to an image measure v on on W, The map T is then an example of causal (Monge) coupling
on W? x W between 7 and v.

An equivalent manner to state that 7 : W? — W is causal is to require that

Vte[0,1], VB e F;, w dpy)(B) is Fi-measurable,

where 07, is the point mass at T'(w) € W, Denoting by X the canonical process on W¢,
d7(.) Tepresents in fact the ‘conditional distribution’ of 7'(X) given X = w:

o) =L"(T(X)|X =w)

This suggests the following definition of causality for an arbitrary coupling: given a probabil-
ity measure 7 on W% x W% and writing X and Y as the first and second marginal processes,
one replaces the above condition with the requirement that

(1) Vt€(0,1], VBeEF, w— LT(Y|X =w)(B) is F-measurable.

There are some technical subtleties to take care of since the conditional distribution is only
defined up to null sets, and there is a choice to be made between using the canonical filtration
or its right-continuous version. We will give a precise definition below (Definition 2.1).

Since the notion of causality is not symmetric, the corresponding optimal transport prob-
lem does not yield a (symmetric) notion of distance. A remedy is to consider bicausal cou-
plings, which satisfy (1) and its symmetric counterpart

Vi€ [0,1], VBeF, w— LT(X]Y =w)(B) is F-measurable.

Causal optimal transport has been studied in detail in the discrete time case [4-6, 8, 16, 17,
35, 38], where the sequential character of processes allows to study the properties over a
single time period and extend them by induction. However, the continuous time case reveals
much more structure, with links to stochastic analysis and functional inequalities [22, 28].
As noted by Lassalle [28], the Ito map associated with the unique strong solution of a
stochastic differential equation (SDE) is a natural example of causal Monge transport from
the Wiener measure to the law of the solution, while the concept of weak solution provides
an example of causal coupling a la Kantorovich between the Wiener measure and the law of
the solution. Optimal transport on the Wiener space has been investigated in [19, 20]. Causal
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transport on Wiener space has been investigated in the context of filtration enlargements [1]
and its relation to Talagrand’s inequality [22, 28]. Backhoff et al. [5] show the relevance of
causal Wasserstein distances induced by such causal transports for superhedging problems.

The present work is a detailed study of the structure of (bi-)causal couplings on path
space, focusing on the case where the measures involved have a ‘differential’ structure i.e.
are (weak) solutions of stochastic differential equations (SDEs). In addition to confirming
that many of the results obtained in the discrete-time setting remain true for (bi-)causal trans-
ports on path space, we show that, when the measures are weak solutions of SDEs, bicausal
transports between these measures inherit this differential structure and may be represented
in terms of stochastic integrals or, more generally, semimartingales. In contrast to the discrete
time case, we show that causal transport between laws of SDEs has a rigid structure: essen-
tially, bicausal couplings of SDEs are given by bicausal coupling of the driving Brownian
motions (Theorem 3.2), for which we give a complete description (Theorem 3.1).

Related questions have been studied in [7, 33], where (bi-)causal transport problems for
solutions to scalar SDEs are investigated, as well as in [10] using a stochastic control ap-
proach.

1.1. Contributions. We study properties of (bi)causal couplings for probability measures
on the space of continuous functions defined. We first prove a characterization of bicausal
couplings between weak solutions of SDEs and then investigate the case where the bicausal
couplings are induced by a Monge transport. Denoting by the I1.(n,v) (resp. IIy.(n,v)) the
set of all causal (resp. bicausal) couplings, for any map 7" : W? — W¢ which transports 7 to
v,ie. Tun=v, we have

(1d,T) ,n € le(n,v) <= T is non-anticipative.

We show in Lemma 3.4 that, when 7 and v are unique weak solutions of SDEs,
(1d, T) un € pe(n,v) <= (Ty)yeo1) 18 @ <77, (.Ft)te[gjl])—semimartingale,

where T} := T'(w)(t). Using a martingale representation result of Ustiinel [36], we are able
to completely characterise bicausal Monge transports between such measures. We show that
such maps inherit the differential structure of 7, v in the sense that 7" satisfies an SDE (9)
(Theorem 3.3). In particular, we show bicausal Monge transports of d-dimensional Wiener
measures are induced by stochastic integrals of adapted O%-valued integrands, where O¢ is
the orthogonal group of d x d matrices.

Given an SDE with unique strong solution, the Ito map provides an example of causal
transport from the Wiener measure W¢ to the law v of the solution on path space. Theorem
3.3 characterizes all bicausal Monge maps from W¢ to v as the composition of the Ito map
with integration against an adapted (%-valued process.

Using the aforementioned characterization of bicausal Monge transports, we give sim-
ple conditions for their existence (Corollaries 3.2,3.4,3.5). We show that any bicausal cou-
pling between Wiener measures has a differential representation i.e. may be represented by a
stochastic differential equation (Proposition 4.1). Through this SDE, we can establish neces-
sary and sufficient conditions for bicausal couplings between weak solutions of SDEs to be
induced by a Monge map (Proposition 4.1 and Corollary 4.1).

Beiglbock et al. [9] showed that in discrete time, the set 7;(]?, P’ ) of causal Monge cou-
plings is dense in the set of all causal couplings. We show that similar density properties hold
for bicausal transports between laws of SDEs with strong, pathwise unique solutions and con-
tinuous (possibly path-dependent) drift and invertible diffusion coefficients (Proposition 4.4
and 4.5). The proofs make use of M. Emery’s results on “almost Brownian filtrations"[18],
whose potential role in the study of causal transports was already noticed in [9, Section 5.4].



A consequence of our results is that, for many cost functions the bicausal Monge problem
between weak solutions of SDEs and its Kantorovich relaxation lead to the same transport
cost (Corollary 4.2).

Outline. Section 2.1 establish notations and defines causal couplings and maps. Section 3
contains the main results on the characterization of bicausal couplings and Monge maps be-
tween laws of solutions of SDEs, and some results regarding the existence of such transports.
Section 4 considers some applications of these results.

2. Causal couplings on path space.

2.1. Notations. Let d > 1. Given v,w € R<, we denote the standard Euclidean inner
product as (v, w)g. and norm ||v||ga := /(v,v)ga. The space of d x d matrices is written as
R¥*4 1d; € R4 is the identity matrix. Given A € R?*? A* denotes the transpose of A,
A~1 denotes the inverse of A, tr A denotes its trace, det A denotes its determinant, ker A
denotes its kernel and AT denotes its Moore-Penrose pseudoinverse [23], that is, AT is the
unique matrix satisfying i) AATA = A, ii) ATAA? = AT, iii) AAT and AT A are symmetric.
We denote O the set of orthogonal matrices, S_‘f_ the set of symmetric matrices, S i the subset
of symmetric positive semi-definite matrices and C? C S - the subset of matrices defined as
in [18]:

Idg C

d__ d
cl={Ces ’(C*Idd

) € 82} = {C € 8%, Cllop < 1} = conv(07),
where ||.||p designates the operator norm and conv designates the convex hull. The second
and third equalities are shown in [18, Proposition 1].

Denote W< := C([0,1],R?), the space of continuous R%valued functions on [0, 1].
Equipped with the topology 7. induced by the supremum norm, ||-||, W is a Polish
space with Borel o-algebra J; := o'(1yy«). The canonical filtration is denoted (%), [ 1 and
given by F; = o(f;) C F1, where f; : W% — (W9 Fy), fi(w) :=w(- At) for t € [0,1] and
set (Ht)te[o ) to be the right-continuous version of the canonical filtration, i.e.

He = Fir = Ne>0F (11e)n1 € F1.

The canonical process on W is defined as X : W¢ x [0,1] — RY, X (w,t) = X;(w) 1=
w(t). When we write X., we mean the identity map, i.e. X.: W? — W9, X (w) = w. On
the product W% x W4, without risk of confusion, X will also denote the first component
X (w,w') :=w while Y denotes the second component Y (w,w’) := w’.

Given measurable spaces (Z;, Z;), where i = 1,2 and Z; is some o-algebra, Z; ® Z5 is the
product o-algebra on Z; x Z,. P(Z;) denotes the space of probability measures on Z;. Given
n € P(Z1), the n-completion of Z; is written as Z? . Given a 21 /Z,-measurable function
f 21— Zy, f4n € P(Zs) is the pushforward of n under f, i.e. fun(A) :=n(f"1(A))
for A € Z,. Furthermore, for p > 1, we write LP(n, Z1) to be the set of all Z;-measurable
functions f : Z; — R (identified up to 7n-a.s. equivalence) satisfying

B (|f7) = /Z |F(w)Pr(dew) < oo,

A filtration on (Z1,Z) is a family of c-algebras (M)te[o,l]’ such that N, C N; C Z;
for all 0 < s <t < 1. We call the quadruple (Zl,Zl, (./\/'t)te[m],n) a stochastic basis if
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(‘/\[t)te[o,l] is a n—complete, right-continuous filtration. The space of all square-integrable
(n, (/\/})te[oyl])—martingales is denoted

M? <,7’ (-/\/t)te[o,l]> = {M = (Mt);e0,1) 18 an (1, (J\/t)te[o’u)-martingale, tz%pl] E7| M| < oo}.

Finally, if n; € P(Z;) for i = 1,2, n; ® 12 denotes the product coupling 171 ® n2(A X B) :=
771(A)772(B) for Ac Z1,B € 2.

2.2. Definitions. Letn,v € P(W?) be probability measures. 7 € P(W? x W) is a cou-
pling of (n,v) if

Xym=mnand Yur =v.

The set of all such couplings is denoted II(n, v/). Since W x W% equipped with the product
topology is a Polish space, for any 7 € II(n, v) there exists an n-a.s. unique probability kernel
O : W x Fi — [0,1], (w, A) — ©¥(A) which disintegrates 7 with respect to 7 [26]:

7(Ax B) = /Wd 14 ()% (B)n(dw).

We call O, the disintegration of 7 with respect to n. Note that ©% is a version of the con-
ditional distribution of Y given X = w, L™ (Y|X = w). We recall the definitions of causal
transports and causal couplings [1, 28]:

DEFINITION 2.1 (Causal couplings and causal Monge maps).
Let ‘H; be the right-continuous version of the canonical filtration, defined as above.

1. w €1Il(n,v) is a causal coupling between 1 and v if
() forall t € [0,1] and B € H;, w+— ©¥(B) is H/-measurable.

We denote by II.(n, ) the set of causal couplings between 7 and v;

2. A measurable map T : W? — W% is a causal Monge transport between 7 and v if the
image of 7 under 7" is v and the induced transport plan 7y := (X.,T") »7 1s a causal
transport: 7w € I.(n,v).

3. m e II(n,v) is a bicausal coupling between 7 and v if 7 € II(n,v) and Rym € II(v,n)
where R is the exchange of coordinates:

R: W x W 5w x w?
(W, w) = R(w,w) = (W, w)
The set of all bicausal couplings between 1 and v is denoted I1.(n, ).
4. T: W — W is said to be a bicausal Monge map between 1 and v if 77 € Iy.(n, v).
Toe(n,v) denotes the set of all m € II(n, ) such that 7 = 77 for some bicausal Monge
map 7'. Abusing notation, we will write T € T.(n, v) if 77 is a bicausal coupling.

5. Toer(n,v) denotes the set of all couplings 7 € II(n, ) such that 7 = mp for some a.s.
bijective' bicausal Monge map 7.

REMARK 1.

1. Comparing Definition 2.1 and (1), we observe two differences:

ITisas. bijective if there exists T : W — W such that n-a.s. ToT=X. andv-as. ToT =X..



* we ask for measurability with respect to the completed o-algebra #}, instead of just
‘H:. This is because the disintegration O is only 7-a.s. unique;

* Second, we have used the right-continuous filtration (#),¢(g 1j> instead of (F¢) (g -
This is motivated by the fact (#}), clo) 18 @ complete, right-continuous filtration for
which many familiar results from stochastic analysis hold, e.g. martingales have cadlag
modifications.

2. To verify (2), it is sufficient to check measurability of ©(B) for all B € F;. This obser-
vation implies that:

o if H} = F, for all t € [0, 1], then it does not matter if we replace H; with F; in (2).
Indeed, the set of causal couplings would not change. This was observed in [7, Remark
2.4] for the case when 7 is the law of a strongly Markov process. We also mention [29,
Theorem 5.19] which shows that 7;) = F,' when 7 is the law of an SDE with Lipschitz
drift and uniformly elliptic diffusion coefficient; and,

¢ II.(n,v) and hence, IIy.(n,v), are compact for the topology of weak convergence by
[28, Theorem 1, Remark 5].

2.3. Relation with the H-hypothesis. Brémaud and Yor [11] introduced the H-hypothesis
as a property of filtrations useful in filtering theory. Two filtrations (M), €[0,1] and (Aft)te[o,l]
on a probability space (2, N, P) such that M; C N; C N are said to satisfy the H-hypothesis
if every square integrable (P, (M;))-martingale is also an (IP, (V;))-martingale:?

MQ(Pa (Mt)te[o,l]) < M2(IP7 (M)te[o,l])'
It was noticed in [1] that causality of 7 € II(n,v) is equivalent to the H-hypothesis for the
filtrations (H; ® {0,W}),e(0,1) and (H7 ®Ht)t€[0 ;) on W x Wi Fy @ Fy, ). Since
this is a key property that we will use repeatedly, we state it as a theorem below. Given a

probability measure 7 on the product space (W9 x W9, F| @ Fi) we denote by PJ the
right-continuous m—completion of the canonical product filtration:

3) Pli=Nes0(Hite @ Hige)™

THEOREM 2.2. A coupling m € I1(n,v) is a causal coupling if and only if the filtrations
(1] @ {0, W} )sej0.1) and (PT )repo,1) on W x W, Fy @ Fy,7) satisfy the H-hypothesis:

“4) M (7, (H] @ {V)awd})te[m]) C M (7, (P )tepo.1))-

PROOF. From [11, Theorem 6] or [1, Remark 2.3], = € II.(n,v) if and only if the H-
hypothesis holds between filtrations (H; @ {0, W*})icp0.1) and (1] @ Hy), cfo.1] OP (W x

Wi F @ Fi, 7). Hence, necessity is clear since H; @ Hi C Neso(Hire @ Hive)™.

To prove sufficiency, let (M), 1) be a (m, (H] @ {0, W?}))-martingale, which we can
assume without loss of generality to be cadlag. It is straightforward to verify that (Mt)te[o,l]
is a (m, (H; ® H;))-martingale by causality of 7 in light of [11, Theorem 6] or [1, Remark
2.3]. Since (My);e(o 1 is cadlag, itis a (7, (P )ie[o,1)-martingale by [34, Lemma 67.10] as
required. O

REMARK 2. Note that the filtrations in the above theorem are complete and right-
continuous. In particular, martingales have cadlag modifications and up to standard local-
ization techniques, it is sufficient to consider bounded martingales for checking the H-
hypothesis. One can obtain other characterisations of causality using [11, Theorem 3].

Note that this is a “property" rather than a “hypothesis" but we will stick to the historical terminology intro-
duced in [11].
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3. Causal Transport between weak solutions of stochastic differential equations.

3.1. Bicausal couplings of Wiener measures. We first examine bicausal couplings of (d-
dimensional) Wiener measures.

THEOREM 3.1 (Bicausal couplings of Wiener measures). 7 € ITy.(W<, W) if and only
if there exists a stochastic basis (Q,G,(Gt)ie(01),F) and two d-dimensional (Gt)cpo 1)-
Brownian motions B and B such that  is the joint law of (B, B). In particular, there exists
a (gt)te[o,l} -progressively measurable process p : [0,1] x Q — C¢ such that

t
vt € 10,1] (B, B); :/ psds, T-a.s..
0

PROOF. Assume 7 € II;,.(W¢, W¢). By Theorem 2.2, the marginal processes X and Y are
(7, (P )tej0,1])-martingales (and, hence Brownian motions), from which the desired result
follows.

To see necessity, we first show that under m := (B, B)4P, X is a (m, (H; ® Hi)iep,1])-
martingale. Fix any 0 < s <t <1, A,C € H; and (w,w’) = Laxc(w,w’). Since B, B are
(Gt)iejo,1-Brownian motions, they are (PP, (G;))-martingales and B_l(’Hs),E—l(Hs) C Gs.
Hence, we compute

E™((X; — Xo)Laxc) =E¥((B; — By)1axc(B,B)) =0,

which verifies the desired. By continuity of sample paths and [34, Lemma 67.10], we even
have that X is a (m, (P );e[o,1))-martingale. By the martingale representation theorem of
Brownian motion, every element in M?2(r, ()" ® {@,Wd})te[oju) can be written as a
stochastic integral against X, from which we conclude (4) holds and 7 € II.(W¢, W) by
Theorem 2.2. A completely symmetric argument gives 7 € IT,.(W9, W),

The existence of p follows from the Kunita-Watanabe inequality. Indeed, the aforemen-
tioned inequality gives

B, Bl — [B, Bls| < ([Bl: — [Bls)*([Bl: — [Bls)"/* = |t — s,

which shows that [B, B] has finite total variation, which is absolutely continuous with respect
to the Lebesgue measure. O

REMARK 3. Note that (B, B) is not necessarily an R??-valued Brownian motion. As
an example, given a Brownian motion B, one can set By = fg(ﬂ[o,l/m(s) + (Iym, ,>01 —
1B, ,,<01) 1(1/2,1)(8))dBs. By Lévy’s characterization of Brownian motion, B = (Bt),c0,1]
is Brownian motion with respect to the filtration generated by B, and hence, Law (B, B) €
. (W', W) by Theorem 3.1. But this joint law is not a Gaussian measure since By — By =

21¢p, ,<0y(B1 — By2)-

3.2. Bicausal couplings between solutions of SDEs. 'We now provide a characterisation
of bicausal couplings and Monge transports between weak solutions of SDEs. We first present
the main results, Theorem 3.2 and 3.3, and their corollaries and defer technical proofs to
Section 3.4. Let

o= {a 0,1 x W — R 2 s (Ft)seo,1)-Progressively measurable}



™ # €0, (Wd, Wd)

FE,E
FIG 1. Bicausal couplings m € Hbc(,ug’b, ug’b) between (strong) solutions of SDEs may be constructed by
pushing forward bicausal Wiener couplings 7 € 11y, (\Wd7 Wd) with the Ito maps (Fa’b7 Fﬁ’b).

for d,d’ > 1. We consider the SDEs
5) dZ, = b(t, Z)dt + o(t, 2)dB,, Zo=2
(6) dZy=bt,Z)dt +5(t,Z)dB;, Zo=7%.

where 0,7 € o7%% and b,b € &7*! are such that

ASSUMPTION 1. There exists a unique weak solution ,ug’b € P(W?) (resp. ,ug’g €
P (W) for (5) (resp. for (6)).

The following theorem is a characterization of the set of bicausal couplings between the
solutions of SDEs. It generalizes [7, Proposition 2.2] to the case where d > 1 and the SDEs
may not necessarily have strong solutions.

THEOREM 3.2. 7 € Hbc(,ug’b,,ug’g) if and only if there exists a stochastic basis
(Q, 9, (Gt)iepo 1},IP’), d-dimensional (Gt) (o 1j-Brownian motions B and B and (Gt)iepy
adapted processes Z., Z such that

* (Z,B) and (Z, B) satisfy (5) and (6) respectively, and
s m is the joint law of (Z,Z): m = (Z, Z ) 4P.

In particular, the joint law of (B, B) under P is a bicausal Wiener coupling.

In other words, all bicausal couplings may be obtained by a bicausal coupling of the Brow-
nian motions in (5) and (6).

Consider the case of bicausal couplings between d-dimensional Wiener measures. Theo-
rem 3.2 gives that 7 € II,.(W?, W) if and only if 7 is the joint law of two processes which
are Brownian motions with respect to a common filtration. A consequence of this observation
is that all bicausal couplings between SDEs with strong, pathwise unique solutions are ob-
tained by taking the image of bicausal Wiener couplings in IT;,.(W¢, W¢) under the respective
Ito maps (Figure 1).

COROLLARY 3.1.  Assume the SDEs (5) and (6) have strong solutions satisfying path-
wise uniqueness, given by the Ito maps F7° : W Fi) — (W, Fy) (resp. F7Y). Then
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all bicausal couplings m € Hbc(,ug’b, ,ug’g) between the solutions of the SDEs may be ob-
tained by pushing forward bicausal Wiener couplings % € Iy.(W¢, W) with the Ito maps

(Fa,b FE’E).‘
Hbc(ﬂgyb,,ug’E) _ { (};ﬂ,b7 FE’B)#f[' = Hbc(Wd,Wd)},
where (F b F E’E)#fr designates the image of the measure T under the map
(X,Y) e WEx Wi (FOV(X), FPY(Y)).
PROOF. The construction is shown in Figure 1. Note that the assumption of unique, strong

solutions automatically implies weak uniqueness so that Assumption 1 holds and we can use
Theorem 3.2, which yields the desired result. O

The preceding corollary allows us to deduce the properties of Hbc(ug’b, ,ug’g) from the
study of IIj. (W<, W%), which we will use in Section 4.

3.3. Characterisation of bicausal Monge transports. For bicausal Monge maps, we first
note that on (W<, Fy, u2'*), the canonical process (Xt)iep, isa (u2®, (H,))-semimartingale
with decomposition

t b

@) Xy=z+ / b(s,X)ds+ M!"="  p2P-as. tel0,1],

0
where (M) is a (u2?, (#;))-local martingale with quadratic variation

t

(8) [M“g’b,M“?b} :/ o(s,X)o*(s,X)ds ,u‘zf’b—a.s. t€10,1].

¢ 0
We then have the following characterization:?

THEOREM 3.3 (Characterisation of bicausal Monge transports).  Ler 1 := #‘;’b and v :=

,ug’b. For T: W — W4, define Ty(w) :=T(w)(t) € R? for t € [0,1]. T is a bicausal Monge
map from 1 to v if and only if there exists some (7—[? ) te[0,1] -progressively measurable process

Q:[0,1] x W¢ — O% such that (Tt) 0,11 is a (n, (Hg)te[o 1])-semimartingale satisfying
t t
9) T; :z+/ b(s,T)ds+/ 7(s,T)Qso (s, X)dM?" n-a.s.
0 0
and
(10) F(t, T)Qr=c(t, T)Qo' (t,X)o(t,X) dnp@dt —ae.

Since of(s, X)o (s, X) is an orthogonal projection onto the orthogonal complement of
Kero(s, X) (see [23, Section 5.5.4]),

(11) (10) <= QsKer(o(s, X)) C Ker(a(s,T)).

3We thank Y. Jiang for the sufficiency part of this theorem.



10

FIG 2. Any bicausal Monge transport € ﬁc(ug’b, ug’b) can be constructed by pushing ug’b along Rg’b, then
T and finally, F7°.

PROOF OF (11). Let Py :=o'(s,X)o(s, X). Then,
(5, 7)Qs =7(s,T)QsPs +7(s,T)Qs(1dg — Ps).

Hence, (10) <= 5(s,T)Qs(Id; — Ps) = 0. Since Id; — P is the orthogonal projection onto
Kero(s, X), the statement follows. O

Equation (10) enables one to identify situations where bicausal Monge maps cannot exist:

COROLLARY 3.2.  Under the assumptions of Theorem 3.3 , if for all s € [0, 1],
dim (Ker (5 (s, < min dim(K ’ ’
Inax im(Ker((s,w))) min, im(Ker(o(s,w)))
7,b

there exists no bicausal Monge transport from ug’b to iz

The bicausal Monge transports which leave the Wiener measure invariant are exactly
(causal) local orthogonal transformations, which reflect the local gauge symmetry of the
Wiener measure:

COROLLARY 3.3 (Bicausal Monge transports between Wiener measures). 7The set of all
bicausal Monge transports from W< to W is given by

Toe(W, W) = ({/ QsdX,, Q:[0,1] x Wiis 04 s (Hyvd)te[o’l]-progressively measurable }
0

More generally, if o is invertible, then o' (¢, X) = o~ (¢, X) and (10) holds. In this case
we have a complete description of the structure of bicausal Monge transports between %7

and 157 (see Figure 2):

COROLLARY 3.4 (Bicausal Monge transport between strong solutions of SDEs).  Assume
the SDEs (5) and (6) have strong solutions satisfying pathwise uniqueness, given by the Ito

maps Fo - (W9, Fi) — (W9, Fy) (resp. FP). If o(t,w) is invertible for all (t,w), then the

set of all bicausal Monge transports from ,ug’b to ,ug’b is
{FE’E oToRI®, T € Tp(We, W }
where Rg’b W W is defined by

R?b(X):/ o (s, X)dM, po? —as.and M. ::X.—z—/ b(s, X)ds.
0 0
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PROOF. Let 7 := u2*° and (]:—t)te[o,l] be the right-continuous version of the filtration
generated by RJ® = ((Rg"’)t)te[071}, where (RZ?); := fg o~ 1(s,X)dM,. We claim that
(ﬁf)te[o’l] = (Hg)te[o - Itis clear that F/' CH] forall t € [0,1]. To see the converse, note
that ((Rg’b) Jtelo,1] 18 @ (F7 )te[o,1)-Brownian motion by Lévy’s characterization of Brownian
motion. Furthermore, by definition of ((Rz’b) )tefo,1) and (7), we have

t t
Xi=z+ / b(s,X)ds + / o(s, X)d(RIP)s, t €[0,1] n-a.s..
0 0

By pathwise uniqueness, X must be adapted to the filtration generated by Brownian motion
R%? 5o that H{ C F forallt € [0,1].

Let 7' be a bicausal Monge map from Mz to ,uf . Then, by Theorem 3.3, there ex-
ists some (H});c[0,1]-progressively measurable O%-valued process (Qt)te[o 1] such that (9)

and (10) holds and by pathwise uniqueness, it is clear that T =F% C’b fo Qsd( Jb) )
But since (F}' Jte0,1] = (H{)iefo,1]- then there exists a (7£;" )te[o,l] -progressively measur-

able Od—valued process (Q;) such that Q, o R%* = Q; n-a.s. for all ¢ € [0,1]. The map
X—T(X fo Qsd X, is a bicausal Monge map from W¢ to W¢ by Corollary 3.3 and

it can be readlly verified that n-a.s. T(RZ") = [, Qsd(RZ ®),. Hence, T' = F7*(T(RZ")) as
required. B
Finally, since (10) is satisfied, for any T € Tp.(W¢, W), the map F75(T(RZ")) is a
bicausal Monge map from ug’b to ug’b using Theorem 3.3. O
Corollary 3.4 is the case where Ker (o (s, X)) = {0} € Ker((s,T)) so that (10) is always

satisfied, while Corollary 3.2 is the case where (10) is never satisfied. One can construct
intermediate situations via conditions on the diffusion coefficient . For example,

COROLLARY 3.5. Let 0,5 € /% be such that for all t € [0,1], w,w’ € W¥,
1
‘E(t,w) —E(t,w')’ < L|jw - w'HOO and / ‘5(8,0)‘2618 < 00.
0
for some L > 0. If Ker(a) is deterministic and for all s € [0, 1],

di (K , ) < dim(Ker(7)(s)),
max dim er(o(s,w)) ) < dim(Ker(a)(s))
there exists a bicausal Monge transport from u?o to ,uf’o.

PROOF. We construct an O%-valued process (Qt) e [0,1] such that forall s € [0,1],w € W1,

QsKer(o(s,w)) C Ker(a(s))
so that (10) holds. Let T(s) := dim(Ker (5 (s))) and m(s,w) := dim(Ker(o(s,w))) so that
m < m. Letting 0 =U V" be the singular value decomposition (SVD) of &, we see that
for fixed s € [0,1], d — m = max{k C Yk > 0} (without loss of generality, the diagonal

entries of X are assumed to be decreasing). Hence, writing v} as the ith-column of V" and

@ :=d—mm, then Ker( (s, w)) = Span( {” }j o+1

to replacing the last m columns of V", we assume that {v }

). Since Ker (*(s, w)) is deterministic, up
i—g1 are vectors depending
on time, but not on w. Hence, let O, ¢ be any time-dependent orthogonal matrix whose last



12

m columns are {v }d _t Letting 0 = UXV™ be the SVD of o, one easily verifies that

Q(s,w) := 0.V (s,w) is the desired Q noting that the kernel of o(s,w) is given by the last
m vectors of V". Picard iteration applied to (9) yields the existence of a bicausal Monge
transport. 0
3.4. Proof of Theorem 3.2 and 3.3.
3.4.1. Martingale Representation Theorem. A crucial ingredient in the proof of our re-

sults is a martingale representation property [36, Theorem 2] applicable to SDEs with unique
weak solutions (see also [13, Ch. 7]).

PROPOSITION 3.1.  On (Wd,]-"l, (H?)te[o i
F € L%(n, F1), there exists a (H?)te[o 1 -progressively measurable process ¢ : [0,1] x W —

R? such that
1
E" / €2 ds | < oo
0

/gs,dL pe = /ngdy n-a.s.,

where L. = fo ol (s, X)dMy. In particular, any square-integrable (1, (7—[?)

17), where 1 := ,ug’b, we have that for any

and

te[o 1])-martingale

(M¢)1e(0,1] has representation

M; = /ZngLg, vte[0,1] n-as..

PRrROOF. Consider the filtered probability space
(Q7 g? (gt)te[OJ] ) P) = (Wd X Wd7 fl ® Fla (Pp@)WJ)tG[O,l} i & Wd) ’

using the notation in (3). Since X 4P =, we can identify L?(n, F;) with L*(P,F; ®
{@,W4}) by the Doob-Dynkin lemma (see [26]) and we no longer distinguish these spaces. It
is straightforward to verify that P € IT,.(n, W?). (7) and Theorem 2.2 implies that <Xt)te[o,1]

is a (P, (G;))-semimartingale such that (Xt —z— fot b(s,X)ds) o is a (P, (Gy))-local
telo,

martingale and
t
vie (0,1, [X,X],= / o(s, X)o* (5, X)ds P-as,
0

and (Y?)¢po,1) is a (P, (G¢))-Brownian motion independent from (X¢),¢( 1)- Following the
proof of [25, Theorem 7.1'], we define

t t
(12) B, :—/ aT(s,X)dMS+/ (Idg — o' (s, X)o (s, X))dYs,
0 0

where M; := X; — z — fg b(s, X)ds. Then, (Bt),c(q; is a (P, (G¢))-Brownian motion by
Lévy’s characterization of Brownian motion and M; = fo s,X)dBg forall t € [0,1] P-a.s..
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That is, the pair (X, B) satisfies SDE (5). Since o' (s, X )o (s, X) is an orthogonal projection

onto the range of 0*(s, X) (see [23, Section 5.5.4]), we have by [36, Theorem 2] that for any
F € L?(n, F1), there exists a (1] ® {0, W*});c[0,1)-progressively measurable process (&;)

such that
! 2
B ( [ lleds | <o
0

_ /01 <§5,UT(S,X)U(S,X>dBS)Rd P-as..

Using (12), one can verify of(s, X)o (s, X)dBs = o' (s, X)dM,, from which we obtain the
desired result. O

and

3.4.2. Technical proofs.

PROOF OF THEOREM 3.2. Denote 7 := ug’b and v 1= ,ug’b. We first prove sufficiency,
that is, 7 = (Z, Z) 4P € Iljc(n, v). By Assumption 1, it is clear 7 € II(n, ~) and it remains to
show bicausality of 7. Define P/ as in (3). We begin by verifying that X is a (7, (P )sc(0,1))-
semimartingale, for which it is enough to show that M; := X; — z — fg b(s,X)ds is a
(7, (P{)te[0,1])-local martingale. Up to localization, we may assume (Mp),cq ) is bounded.
Since Z (M) = Nes0FF,e, where (]:tZ)tE[O,l] is the filtration generated by (Z;):cp0,1]»
and (gt)te 0,1] 18 right-continuous by assumption, it follows that Z7Y(H¢) C Gy Simi-

larly, Z (%t) C G;. Hence, we calculate for 0 < s <t <1, A/ B € H, and (w,w') —
:H-AXB(w w )a

t
E™(M1laxp) = EP(/O o(u, Zu)dBuﬂz—l(A)rﬁ*l(B))

P ® -
=K <A U(u’Zu)dBuHZI(A)ﬂZI(B)> =K (MS]lAXB)

since [y o(u, Z,)dBy is a (P, (G;))-martingale. This shows that (M)ep0,17 18 a (, (He @ Hy))-
martingale and even a (7, (Pf")¢c[,1))-martingale by continuity of sample paths and [34,
Lemma 67.10]. By the stochastic integral representation of elements in M?(m, (H] ®
{@,»W4})) from Proposition 3.1 and Theorem 2.2, we conclude 7 € TI.(n, v). A completely
symmetric argument yields 7 € II;.(n, ) as required.

To see necessity, let m € Tly.(n,v). By Theorem 2.2, X and Y are (7, (P )iejo,1))-
semimartingales. Up to enlarging the probability space, we assume that there exists a Brow-
nian motion B independent from X and Y. It is easy to check that X,Y and B remain
semimartingales with respect to probability measure 7 and the (complete, right-continuous)
filtration generated by all three processes, denoted (G;). As in the proof of Proposition 3.1,
we construct (G;)-Brownian motions

t t
Bt::/ O'T(S,X)dMS—{—/ (1dg — ol (s, X)o (s, X))dB,
0 0

t t
Bt::/ aT(s,Y)st+/ (Idd—ET(s,Y)E(s,Y))dBS,
0 0
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where N; 1= Y; —Z— [} b(s,Y")ds. Noting that M; = [} o(s, X)dB, and N; = [ 7(s,Y)d B
yields the desired.
The final assertion regarding the correlation process p is exactly [18, Lemma 5]. O

To prove Theorem 3.3, we require the following generalization of [28, Proposition 4].

LEMMA 3.4. Under the assumptions of Theorem 3.3, a measurable map T : W* —
W from n to v, ie. Tun = v, is a bicausal Monge map if and only if (Tt)te[o,l} is a
(n, (H?)te[ﬂ )-Semimartingale.

PROOF. Suppose T is a bicausal Monge map from 7 to v, i.e. 7y = (X.,T)#n €
Iye(n, v). Causality readily implies that (i), ) is (H)1e(0,1)-adapted. Since T' has law
,ug’b, then (Tt)te[o,l] is a semimartingale with respect to probability measure 7 and its own
filtration, with martingale part N; :=T; —z — fot b(s,T)ds. Up to standard localization meth-

ods, we assume (N¢)c( ) is bounded. Bicausality implies that (N¢),c(o 1) is a (7, (H))-
martingale, which implies the desired. Indeed, for 0 < s <t <1 and A € H, we have

t
(13) E"(Njla)=E™((Y; -7 — / Bu, Y)du) L axos)
0

=E" (Y, —Z - /Osb(u,Y)du)IlAde) =E"(N,1,),

where we have used causality of Rymr € I1.(v,n) and Theorem 2.2 in the second equality.
Conversely, if (13);c(o 1) is 2 (1, (H['))-semimartingale, then it is (H{);c[0,1)-adapted so
that 77 € I1.(n, v). Furthermore, it holds that the first and last term in (13) is equal, so that the
second and third term are equal and (Y?),¢[o 1) is @ (7, (P{")e[0,1]) -semimartingale. By the
stochastic integral representation of elements in M2 (7p, ({#, W9} @ H])) from Proposition
3.1 and Theorem 2.2, we conclude 7y € I (n, v). O

PROOF OF THEOREM 3.3. We start with sufficiency. Suppose 7' is a measurable map
such that (T}),¢(o 1) is a (7, (H}))-semimartingale satisfying (9) and (10). By Lemma 3.4,
it is sufficient to show that Txn = v. As in the proof of Proposition 3.1, up to enlarg-
ing the probability space (W*, F1,n), there exists some Brownian motion B such that
Joo'(s,X)dM = [;o(s, X)o (s, X)dBs. Hence, (9) and (10) implies 7-a.s.

¢ t
Tt—z+/ b(s,T)ds+/ 7(s,T)Qs0 (s, X)o (s, X)dBs
0 0

t ¢
:z+/ b(s,T)ds—l—/ (s, T)QsdBs.
0 0

Since fo @sdB; is a Brownian motion, the law of T is indeed v by weak uniqueness.
For necessity, if T is a bicausal Monge map from 7 to v, then by Lemma 3.4, we have
that (Ty)iepo,y) 15 @ (1, (H))-semimartingale with martingale part (N;),c (1) Where Ny :=

T, — [ab(s,T)ds — Z and n-a.s.

1), = /Ota(s,T)a*(s,T)ds fort € [0,1].
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On the other hand, standard localization procedures and Proposition 3.1 yields a (H,/ )tel0,1]-
progressively measurable process H : [0, 1] x W¢ — R%*? such that for ¢ € [0, 1], -a.s.

t
(14) N; = / H.o'(s, X)dM"
0

with quadratic variation

7], = [N], = /0 t (HSJT(S,X)U(S,X)) (HSUT(S,X)U(S,X))*ds 1-a.5..

Hence, we obtain the n-a.s. equality

t « t
/ (HSUT(S,X)U(S,X)) (HSUNS,X)U(S, X)) ds = / (s, T)5" (s, T)ds.
0 0
By Lebesgue Differentiation Theorem, we obtain that n-a.s. on a set of full Lebesgue measure
(Hyo'(s,X)o(s,X))(Hso' (s, X)o(s, X)) =a(s,T)5"(s,T).

By polar decomposition, this implies the existence of some (7—[? ) ]—progressively mea-

telo,1
surable* @ : [0, 1] x W? — O? such that n-a.s. on a set of full Lebesgue measure, we have

Hol(s,X)o(s,X)=5(s,T)Qs = Hyo'(s,X)=3(s,T)Qs0'(5,X)
and 7(s,T)Qs = (s, T)Qs0 ' (5, X))o (s, X),

from which we obtain the desired using (14). ]
4. Applications.

4.1. Bicausal couplings induced by Monge maps. While Theorem 3.3 gives us necessary
and sufficient conditions for a measurable map 7' to be a bicausal Monge transport, it does
not tell us when a bicausal transport plan is induced by a bicausal Monge map. We will now
show that whether a bicausal coupling is induced by a Monge map depends on the existence
of a strong solution to an associated SDE (15).

In light of Corollary 3.1, we first study the case of bicausal Monge transport between
Wiener measures:

PROPOSITION 4.1 (Bicausal Monge transport between Wiener measures). Let m €
e (W, WYY and p: [0,1] x W x W2 — C? be the (P )tcioa) -progressively measurable
correlation process of X,Y under 7:

d[X,Y]
dt ’

1. If p is an O%valued adapted process and there exists a strong, pathwise unique solution
to the SDE

VA . Idd ZO _
o)) (2)

then 70 € Ty (W9, W),

p(t, X,Y) = T — a.s..

“To see progressively measurability of (), one can show that polar decomposition can be done in a measurable
way following [3].
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2. If 7 is induced by a bicausal Monge map T, then p is O%valued and there exists a strong
solution to (15).

REMARK 4 (Measurability of the correlation process). A priori, for 7 € Hbc(Wd, Wd),
the marginal processes X and Y will be (7, (P[)ic[,1))-Brownian motions and hence,
p, constructed via the Lebesgue differentiation of the quadratic covariation [X,Y], will
be (P] )te[o’l]-progressively measurable. Yet, in (15), we consider p as a component of
a diffusion coefficient of an SDE, which one usually assumes to be (ft@Ft)te[o,u -

progressively measurable. Fortunately, one can always find some 7 : [0, 1] x W? x W% — ¢4
m-indistinguishable from p that is (F; ® ]:t)te[o,l} -progressively measurable by using the
fact that the completion of the canonical filtration of a Brownian motion is always right-
continuous and [24, Theorem 4.37.3].

PROOF. i.: Under 7, X and Y are (P[);c[,1)-Brownian motions such that [X,Y] =
Jop(s,X,Y)ds by Theorem 2.2. Using the fact that p is O%-valued, a direct calculations

shows that [ [, p(s, X,Y)dX, — Y]. =0 and hence, Y; = [} p(s,X,Y)dX; 7-as. forall t €
[0, 1]. In other words, (X,Y") is a solution to (15). By pathwise uniqueness, it follows that Y’
must be adapted to X and hence, 7 € Tj.(W?, W),

11. : Since 7 is induced by a bicausal Monge map, then Corollary 3.3 implies that p must
be O%-valued and as before, we again have Y; = fo s, X,Y)dX, m-a.s.. Hence,

t
T, = / p(s, X, T)dX,, Wdas.
0

and (T3), €o,1] is adapted to (”H}Wd )te[o,1) - the filtration of Brownian motion X, which implies
the existence of a strong solution given by (X.,T). O

REMARK 5. The preceding proposition almost gives a complete characterization of the
set Tpe (Wd, Wd) in terms of the existence of strong solutions to (15). However, at present, the
hypothesis of 7i. seems insufficient to guarantee a pathwise unique strong solution to (15). If
we were to assume the hypothesis of 77. and in addition, assume the weak uniqueness of (15),
then the existence of a strong solution along with weak uniqueness implies the existence of
strong, pathwise unique solution by a result of A. S. Cherny [12, Theorem 3.2]. This holds
for example

1. when p is only a function of X and ¢, so that weak uniqueness of the SDE is trivial;
2. or when p is only a function of Y and ¢. Indeed, any solutions to the SDE

dZ;=p(t,Z,Z)dB; = p(t,Z)dB;

will always have law given by W< since p € O¢. Hence, the preceding SDE has a unique
weak solution and, by [12, Theorem 3.1], the joint law of (Z, B) is the unique weak
solution of (15).

Finally, we note that if € IT.(W%, W) is such that p(X,Y,t) = T4y, >0y — Iy, <oy then
(15) reduces to the well-known Tanaka’s SDE from which we see that there cannot exist a
strong solution. Hence, y cannot be induced by a bicausal Monge transport.

For bicausal couplings between laws of SDEs with strong, pathwise unique solutions, we
have the following corollary under the same assumptions as in Corollary 3.4:
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COROLLARY 4.1.  Assume the SDEs (5) and (6) have strong solutions satisfying pathwise
uniqueness, given by the Ito maps Fob e W Fr) — W4, F) (resp. F7%) and fix T €
e (2, ,ug’b). By Corollary 3.1, there exists 7 € Ip.(W9, W9) such that

- (F"’b,FE’E> £,
"

If o(t,w) and G(t,w) are invertible for all (t,w) € [0,1] x W4, then

e %cw;”*’,u?) = 7 € Tpe(WE, W),

PROOF. It is easy to verify that W%a.s. RZ" o F7b = X and by pathwise unique-

ness, u2%-a.s. FoY o R2? = X. In particular, (Rg’b,Rg’b)#w = 7. Suppose now that 7 €

Toe (W4, W), ie. there exist some measurable 7" : W? — W such that (X, T) #Wd =T.
Then,

T = (FU,b FE,E)

- F"’b,FE’b) X, T), W
= L(XLT)

_ (FU’b, FE’B o T> P <R27b> #Mg,b — <X7 FE,E oTo Rg,b) #M?b-

Corollary 3.4 gives that F7 boTo RZ" e %C(Hg7b7 Mg’g). Similar relations hold for Rg’g and
F if 5°(s,w) is non-singular. Conversely, if 7 € Ty (12", ,ug’b), ie.m=(X, T)#Mg’b for
some measurable 7', then 7 = (X, Rg’b 0T o Fob) , W4 € Ty (W, W), O

4.2. Denseness of bicausal Monge maps among bicausal couplings. We establish condi-
tions under which couplings induced by bicausal Monge maps are dense in the space of bi-
causal couplings. We first show that 7;.(W?, W%) is dense in II;.(W9, W¢) for the topology
of weak convergence of probability measures before moving on to the general case. We use
the result of M. Emery [18, Proposition 2], which showed that the set of “mutually adapted
Brownian motions" is dense in the set of “jointly immersed Brownian motions", which is
exactly equal to IT,.(W9, W9) in light of Theorem 3.2.

PROPOSITION 4.2.  Tpe(W?, W) is dense in Iy,.(W?, W) for the topology of weak con-
vergence of probability measures.

PROOF. By [18, Proposition 2], given any 7 € IT;.(W? W), there exists Brownian mo-
tions X™ and Y on some abstract filtered probability space (€2, G, (Gt),c(o,1),P) such that
for each fixed n, X™ and Y generate the same filtration and the law of (X", Y"™) weakly
converges to 7 as n tends to infinity. Since X and Y generate the same filtration, then there
exists some 77" : W9 — W1 such that T%(X") = Y™ P-a.s. and Y is a Brownian motion
with respect to the filtration generated by X™. Since Y™ is a Brownian motion, it is easy
to see that T Law(X™) = T#Wd = W¢. Lemma 3.4 gives that 7" € Tp,.(W?, W) and that

Law(X™,Y") = (X.,T”)#Wd weakly converges to . O

REMARK 6. A longer, but more explicit proof may be obtained along the lines of the
proof of [18, Proposition 2] where Y™ is constructed explicitly as a stochastic integral against
X" of an O%valued process, in agreement with Corollary 3.3.

In fact, the smaller set of bijective bicausal Monge transports in also dense subset of bi-
causal couplings:
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PROPOSITION 4.3. Ty (We, W) is dense in Tly.(We, W?) for the topology of weak
convergence of probability measures.

PROOF. In the proof of Proposition 4.2, since X™ and Y™ generate the same filtration (see
[18, Proposition 2]), the role of X™ and Y are completely symmetric, i.e. there exists some
T : We — W such that T"(Y™) = X" P-as. and T € Tpo(W?, W?). It then holds that
X" =T"oT"(X") P-as.. In other words, 7" o T = X. W-a.s.. A similar statement holds
for T" o T™. O

We now transfer this density result between couplings of Wiener measures to the density

of ﬁc(ug’b, ug’b) in Hbc(,ug’b, ,ug’b) using the following abstract lemma:

LEMMA 4.1.  Let n,v € POWVY) and sets A, T C POW* x W?) be such that T C A C
II(n,v), A is closed and Y is dense in A. For any measurable F, F : wid s we,

(F,F)y\:={(F,F)gm:m€ A} is closed
and

{(F,F)um:m €Y} isdense in (F,F)gA,
where (F, F)#?T designates the image of the measure w under the map

(X,Y) e W x Wi (F(X),F(Y)).

Note that the lemma is easily seen to be true if F,F are assumed continuous since
I(n,v) ™+ (F,F)yn will be a continuous function over a compact set. For F, F mea-
surable, one can enlarge the topology on W without changing the Borel o-algebra such that
F'is continuous by [27, Theorem 13.11]. By [9, Lemma 2.5], the topology of weak conver-
gence of probability measures on I1(7, ) remains unchanged and we can safely conclude the
lemma. We provide a more elementary and self-contained proof below relying only on Tietze
extension theorem and Lusin’s theorem.

PROOF. We first show that (F, f)#A is closed. Let (7, ),>0 C A be a sequence of proba-
bility measures such that ((F, F)4m,)n>0 converges to some £ € P(W? x W?). Since A is
closed in compact I1(n,v), up to a subsequence, we can assume that m,, converges to some
7 € II(n, v). We now show that ¢ = (F, F) 4. Fix a continuous, bounded f : W% x W —
R and some € > 0. By Lusin’s theorem, there exists closed sets K,.J C W? such that
n(K°),v(J¢) < € and F|f, F|; is continuous. By Tiezte extension theorem [15, Theorem
4.1], there exist continuous G, G : W% — W such that F|; = G|k and F|; = G|;. Note
that

sup  [E"(f(F,F)— f(G,G))[ <2C sup ETL g, 7). <4Ck,
well(n,v) well(n,v)

where C':= sup,, , | f(w,w’)|. Hence, we calculate
BEf — B f(F,F)| <[ESf — B f(F,F)| + [E™ (f(F, F) - £(G.,G))|
+[E™f(G,G) —E"f(G.G)| + [E"(f(G.G) - f(F. F))|
<[ESf —EFER#m | 4 |E™ £(G,G) — E™ £(G, G)| + 8Ce.

Taking n — oo and € — 0, we conclude E¢ f = EF ) f for all continuous, bounded f and
hence, £ = (F, F') 47 as desired.
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To see density of {(F,F)ym:7 € T} in (F,F)xA, fix 7 € A. We wish to show there
exists a sequence (7, )n>0 C T such that (F, F)xm, converges weakly to (F, F)xm. Since
T is dense in A, there exists a sequence (7, ), >0 wWeakly converging to 7. Furthermore, since
((F,F)gmn)n>0 C (F, F) 4\ CIly(Fun, F4v), up to a subsequence, we can conclude that
(F, F) 4, converges to some £ € P(W? x W?) as well. By the same argument as in the

previous step, we can conclude & = (F, F) ., which implies the desired.
O]

PROPOSITION 4.4.  Assume the SDEs (5) and (6) have strong solutions satisfying path-
wise uniqueness. If o(s,w) is invertible for all (s,w), then 750(#‘;”’,#?”) is dense in

Hbc(,ug’b, ,ug’g) for the topology of weak convergence of probability measures.

PROOF. Denote by F = Fob F = F7b the Tto maps for the SDEs (5) and (6),
I' = Toe(WEW?) and A = II,.(W?¢, W9). By applying Lemma 4.1, we conclude that
(Fo, Fb) T (W, W) s dense in Ty (u2", M?g) since I is dense in A by Proposition
4.2 and (FU’b,FaE)#HbC(Wd,Wd) = Hbc(ug’b,ug’g) by Corollary 3.1. Hence, it suffices
to show that (F7b, F70), T, (W9, W) C ﬁc(ug’b,ug’g). This follows from Corollary 3.4
since using the fact that F7:* o RI"=1d ug’b-a.s., we have, for any T' € Tp.(W?, W%),

(Fob, F7%) (14, T) s W? = (F7°, F7%) (1, T) 4 (R7*) 4 u2® = (1d, F7* 0 T 0 RZ?) 4oy 70.
0

PROPOSITION 4.5.  Under the assumptions of Proposition 4.4, if o (s,w) and (s, w) are

invertible for all (s,w), then ﬁcb(ug’b,ug’b) is dense in Hbc(ug’b,ug’b) for the topology of
weak convergence of probability measures.

PROOF. We repeat the proof of Proposition 4.4 with the use of Proposition 4.2 replaced by
Proposition 4.3. We only need to check that if T' € Tye, (W, W), then T":= FoboToRIY €
7;,61,(,1,2”’,“?). Let S: W% — W be such that S € Toe (W, W) and Wé-a.s. ToS =
SoT =X. Itis straightforward to verify that S := F7? o So Rg’g satisfies 7' o S = X.
,ug’g—a.s. and SoT = X. ug’b—a.s. as required.

O

4.3. Equivalence of bicausal Monge and Kantorovich optimal transport. Given some
cost ¢: W x W — R U {400}, we define

1. the bicausal Monge transport problem:

(BMP) M(n,v):= inf / c(w,wdr(w,)= inf E"(c).
TE€Toe(NV) JWd x e TETpe(n,v)
2. the bicausal Kantorovich transport problem:
(BKP) K(n,v):= inf / c(w,wdn(w,w)= inf E"(c),
m€llye (n,v) Jwd x e 7l (n,v)

Since Tpe(n,v) C Hpe(n,v), we have K (n,v) < M(n,v). We can derive sufficient condi-
tions for equality in light of Proposition 4.4:
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COROLLARY 4.2. Under the assumptions of Proposition 4.4, if ¢ : W% x W% — R>o
is continuous and |c(w,w’)| < |¢p(w)| + |Y(W')| for some ¢ € LY(uZ® Fi) and o €

L (,ug’b, F1), then the bicausal Monge and Kantorovich problems have the same value:
ob  Tb o,b @b
K (uZ% p27) = M(uZ”, pz7)-

This proof of this corollary is an adaptation of [30, Lemma 5.14] with minor changes, and
1s, hence, omitted.

4.4. Examples. A striking result, due to Lassalle [28], states that when c is the Cameron-
Martin norm, the value of (BKP)-(BMP) may be computed explicitly and is given by the
relative entropy.

We derive in this section other examples of explicit solutions to (BKP)-(BMP), in the case
where one of the probability measures is the law of an SDE which has invertible diffusion
coefficient and the other is the law of an SDE which has a deterministic drift coefficient and
almost deterministic diffusion coefficient in a sense to be made precise later. In particular, we
highlight how one cannot expect uniqueness of the optimal bicausal transport.

When 7 and v are weak solutions of SDEs, for any 7 € II;.(n, ), marginal processes
(Xt)eqo,1) and (Y2)yepo,1) are (m, (P[)iejo,1))-semimartingales by Theorem 2.2. Inspired by
[5, Proposition 3.3], we will consider costs that have separate dependence on the martingale
and finite variation parts of X and Y. Writing

X=M"+V", Y=M+V"

the semimartingale decomposition of X (resp. Y') into its martingale and finite variation parts
under 7 (resp. v) we consider a transport cost ¢ given by

(16) (X, Y) i=h(VT = V) + g(tr([M" — M"],)),

with A : W? — R>g U {+0c} measurable and g : R — R>o U {+00} monotone increasing.
PROPOSITION 4.6. Let o € /%% be o/ be such that the SDE

(17) dX:=0b(t,X)dt + o(t,X)dB, Xo=0,

has a unique weak solution n := ug’b, where o (t,w) is invertible for all (t,w).
Let & € /% be such that 7 (t,w) = k(t)u(t,w) with u(t,w) € O and assume the SDE

(18) dY; =b(t)dt +7(t,Y)dBy, Yo =0,

has a unique, strong solution with law v := ,ug’b. Denote by Fg P owd s WA the corre-
sponding Ité6 map Then an optimal transport from n to v for a cost of the form (16) is given
by the bicausal Monge map

Wiswe T(w) = Fo‘/ﬁ’b</.Qsal(s,X)dM”(s)>
0

where @ : [0,1] x W 0% s a (H?)te[o,l} -progressively measurable process given by
Qi(w) = Q(t,w) ==V (t,w)U*(t,w) for U(t,w),V(t,w) € O appearing in the SVD of ma-
trix o(s,w)\/ao*(s). In particular,

K(n,v)=M(n,v)=E" (h (/0 b(s, X)ds — /O'b(s)ds>>+

E" g</01 tr(o(s, X)o* (s, X) + 50" (s))ds — 2/01 tr(o(s,X)MQ(s,X))ds)
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REMARK 7. As the singular value decomposition is non-unique, the solution to (BMP)-
(BKP) is also in general non-unique. Furthermore, the assumptions of Proposition 4.6 as-
sumes no regularity on the drift/diffusion coefficients and still concludes the equivalence of
the bicausal Kantorovich and Monge problem, which is not covered by Corollary 4.2. In the
case d=1, 0,0 >0, h(w) :=||wl|,_, and g(z) := z, the preceding result agrees with that of
[5, Proposition 3.3].

PROOF. By rotation invariance of Brownian motion and weak uniqueness, we can without
loss of generality replace (¢, w) by the time-dependent deterministic function & : [0,1] —

RIx4 £(t) 1= \/ﬁ*(t) = \//m*(t).
Let 7w € IIp.(n, v). By Theorem 3.2, there exists some stochastic basis (Q, g, (gt)te[ojl] , IP’)
and (G;)-adapted processes B, B, Z and Z satisfying Theorem 3.2. Then

E7(c) = EP (e(X — Y)) = EP(h(/' b(s, Z)ds — /.b(s)ds))—i—

0 0

E““’@(u([ /0 (s, 2)dB, - /0 'f<s>st} 1) ).

Setting p; = d[B, B]/dt € C% as in Theorem 3.2, we have

tr<[/0' o (s, Z)dBs — /0 g(s)st] 1)

1 1
:/ tr(o(s, Z2)o*(s, Z) + 05" (s))ds — 2/ tr(o (s, 2)&(s)ps)ds
0 0

1 1
2/0 tr(a(s,Z)a*(s,Z)+aa*(s))ds—2/0 ngé)dtr(a(s,Z)f(s)C)ds

1 1
:/ tr(a(s,Z)U*(s,Z)+(m*(s))ds2/ sup tr(o(s, 2)&(s)C)ds,
0 0 CeOd

where we have used [10, Proposition 4.7] in the last equality. By the same proposition,
sup x(o(s, Z)&(3)C) = tr(o(5, 2)E(:)Q(5, 7).
€

where () is defined as in the statement of the proposition. Hence, by monotonicity of g and
temporarily suppressing the arguments of ¢ and b,

(19) E7(c)> En(h(/o' bds — /O.b(s)ds))

1 1
+E’7(g(/0 tr(aa*+aa*(s))ds—2/0 tr(c€(s)Q(s, X))ds)).

Since the RHS of (19) no longer depends on 7, taking infimum over 7 € I;.(n,v) gives
that (BKP) is lower bounded by the RHS of (19). One easily checks that this lower bound is
achieved by 7" as defined in the statement of the proposition, which is a bicausal Monge map
by Theorem 3.3.

O
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One dimensional case The bicausal Kantorovich problem for laws of one-dimensional
SDEs was studied in [7, 33] for a variety of costs and regularity conditions on o,b,7 and
b. For example, if b,0: R — R and 0,0 : R — R>( are Lipschitz-continuous, then by [7,

Theorem 1.3], for any p > 1 and c(w,w’ ) = fol ]ws - w;}p ds, an explicit solution to
(20) inf E™(c)

m€llye (g 1)

is given by the so-called synchronous coupling m* := (F(fvb, F Evg)#Wd. In other words, on
some probability space (€2, F,P) with Brownian motion B = (By)c[o,1), We construct so-
lutions to (5) and (6) driven by the common noise B as Z = (Z;) 0,1] = Fob(B) and

Z = (Zt)seon) = F7(B). Then,

te

1
Efe(Z,Z) :]EP/ |Zs — ZsPds = inf  E"(c).
0 T (1§15 ")

If o(x) > 0 for all z € R, then by Corollary 3.4, we see that the synchronous coupling is
induced by a Monge map F7* o R7*?,

7 = (14, F7" 0 R7Y) i

and (BKP) = (BMP) in agreement with Corollary 4.2. The filtration used to define bicausal
couplings in [7] is the canonical one (]:t)te[o,l], instead of the right-continuous one used in

this work, (Ht)tE[O,l]' However, the Lipschitz assumption in this example implies that ug’b

and ,ug’b are laws of strong Markov processes and these two definitions of bicausal couplings
coincide (see [7, Remark 2.3] or Remark 1 7).
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