
Chapter 4

Overview

4.1 Functional Itô Calculus

Many questions in stochastic analysis and its applications in statistics of processes,
physics, or mathematical finance involve path-dependent functionals of stochas-
tic processes and there has been a sustained interest in developing an analytical
framework for the systematic study of such path-dependent functionals.

When the underlying stochastic process is the Wiener process, the Malliavin
Calculus [4, 52, 55, 56, 67, 73] has proven to be a powerful tool for investigat-
ing various properties of Wiener functionals. The Malliavin Calculus, which is as
a weak functional calculus on Wiener space, leads to differential representations
of Wiener functionals in terms of anticipative processes [5, 37, 56]. However, the
interpretation and computability of such anticipative quantities poses some chal-
lenges, especially in applications such as mathematical physics or optimal control,
where causality, or non-anticipativeness, is a key constraint.

In a recent insightful work, motivated by applications in mathematical fi-
nance, Dupire [21] has proposed a method for defining a non-anticipative calculus
which extends the Itô Calculus to path-dependent functionals of stochastic pro-
cesses. The idea can be intuitively explained by first considering the variations
of a functional along a piecewise constant path. Any (right continuous) piecewise
constant path, represented as

ω(t) =

n∑
k=1

xk1[tk,tk+1[(t),

is simply a finite sequence of ‘horizonal’ and ‘vertical’ moves, so the variation of a
(time dependent) functional F (t, ω) along such a path ω is composed of

(i) ‘horizontal increments’: variations of F (t, ω) between each time point ti and
the next, and

(ii) ‘vertical increments’: variations of F (t, ω) at each discontinuity point of ω.

If one can control the behavior of F under these two types of path perturbations,
then one can reconstitute its variations along any piecewise constant path. Under
additional continuity assumptions, this control can be extended to any càdlàg path
using a density argument.

This intuition was formalized by Dupire [21] by introducing directional deri-
vatives corresponding to infinitesimal versions of these variations: given a (time de-
pendent) functional F : [0, T ]×D([0, T ],R) → R defined on the space D([0, T ],R)
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of right continuous paths with left limits, Dupire introduced a directional deriva-
tive which quantifies the sensitivity of the functional to a shift in the future portion
of the underlying path ω ∈ D([0, T ],R):

∇ωF (t, ω) = lim
ε→0

F (t, ω + ε1[t,T ])− F (t, ω)

ε
,

as well as a time derivative corresponding to the sensitivity of F to a small ‘hor-
izontal extension’ of the path. Since any càdlàg path may be approximated, in
supremum norm, by piecewise constant paths, this suggests that one may control
the functional F on the entire space D([0, T ],R) if F is twice differentiable in
the above sense and F,∇ωF,∇2

ωF are continuous in supremum norm; under these
assumptions, one can then obtain a change of variable formula for F (X) for any
Itô process X.

As this brief description already suggests, the essence of this approach is
pathwise. While Dupire’s original presentation [21] uses probabilistic arguments
and Itô Calculus, one can in fact do it entirely without such arguments and derive
these results in a purely analytical framework without any reference to probability.
This task, undertaken in [8, 9] and continued in [6], leads to a pathwise functional
calculus for non-anticipative functionals which clearly identifies the set of paths
to which the calculus is applicable. The pathwise nature of all quantities involved
makes this approach quite intuitive and appealing for applications, especially in
finance; see Cont and Riga [13].

However, once a probability measure is introduced on the space of paths,
under which the canonical process is a semimartingale, one can go much further:
the introduction of a reference measure allows to consider quantities which are
defined almost everywhere and construct a weak functional calculus for stochas-
tic processes defined on the canonical filtration. Unlike the pathwise theory, this
construction, developed in [7, 11], is applicable to all square-integrable functionals
without any regularity condition. This calculus can be seen as a non-anticipative
analog of the Malliavin Calculus.

The Functional Itô Calculus has led to various applications in the study of
path dependent functionals of stochastic processes. Here, we focus on two partic-
ular directions: martingale representation formulas and functional (‘path depen-
dent’) Kolmogorov equations [10].

4.2 Martingale representation formulas

The representation of martingales as stochastic integrals is an important result in
stochastic analysis, with many applications in control theory and mathematical
finance. One of the challenges in this regard has been to obtain explicit versions of
such representations, which may then be used to compute or simulate such martin-
gale representations. The well-known Clark–Haussmann–Ocone formula [55, 56],
which expresses the martingale representation theorem in terms of the Malliavin
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derivative, is one such tool and has inspired various algorithms for the simulation
of such representations, see [33].

One of the applications of the Functional Itô Calculus is to derive explicit,
computable versions of such martingale representation formulas, without resort-
ing to the anticipative quantities such as the Malliavin derivative. This approach,
developed in [7, 11], leads to simple algorithms for computing martingale repre-
sentations which have straightforward interpretations in terms of sensitivity anal-
ysis [12].

4.3 Functional Kolmogorov equations and
path dependent PDEs

One of the important applications of the Itô Calculus has been to characterize the
deep link between Markov processes and partial differential equations of parabolic
type [2]. A pillar of this approach is the analytical characterization of a Markov
process by Kolmogorov’s backward and forward equations [46]. These equations
have led to many developments in the theory of Markov processes and stochastic
control theory, including the theory of controlled Markov processes and their links
with viscosity solutions of PDEs [29].

The Functional Itô Calculus provides a natural setting for extending many
of these results to more general, non-Markovian semimartingales, leading to a
new class of partial differential equations on path space —functional Kolmogorov
equations— which have only started to be explored [10, 14, 22]. This class of PDEs
on the space of continuous functions is distinct from the infinite-dimensional Kol-
mogorov equations studied in the literature [15]. Functional Kolmogorov equations
have many properties in common with their finite-dimensional counterparts and
lead to new Feynman–Kac formulas for path dependent functionals of semimartin-
gales [10]. We will explore this topic in Chapter 8. Extensions of these connections
to the fully nonlinear case and their connections to non-Markovian stochastic con-
trol and forward-backward stochastic differential equations (FBSDEs) currently
constitute an active research topic, see for exampe [10, 14, 22, 23, 60].

4.4 Outline

These notes, based on lectures given at the Barcelona Summer School on Stochastic
Analysis (2012), constitute an introduction to the foundations and applications of
the Functional Itô Calculus.

• We first develop a pathwise calculus for non-anticipative functionals possess-
ing some directional derivatives, by combining Dupire’s idea with insights
from the early work of Hans Föllmer [31]. This construction is purely analyt-
ical (i.e., non-probabilistic) and applicable to functionals of paths with finite
quadratic variation. Applied to functionals of a semimartingale, it yields a
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functional extension of the Itô formula applicable to functionals which are
continuous in the supremum norm and admit certain directional derivatives.
This construction and its various extensions, which are based on [8, 9, 21]
are described in Chapters 5 and 6. As a by-product, we obtain a method for
constructing pathwise integrals with respect to paths of infinite variation but
finite quadratic variation, for a class of integrands which may be described as
‘vertical 1-forms’; the connection between this pathwise integral and ‘rough
path’ theory is described in Subsection 5.3.3.

• In Chapter 7 we extend this pathwise calculus to a ‘weak’ functional calculus
applicable to square-integrable adapted functionals with no regularity condi-
tion on the path dependence. This construction uses the probabilistic struc-
ture of the Itô integral to construct an extension of Dupire’s derivative op-
erator to all square-integrable semimartingales and introduce Sobolev spaces
of non-anticipative functionals to which weak versions of the functional Itô
formula applies. The resulting operator is a weak functional derivative which
may be regarded as a non-anticipative counterpart of the Malliavin deriva-
tive (Section 7.4). This construction, which extends the applicability of the
Functional Itô Calculus to a large class of functionals, is based on [11]. The
relation with the Malliavin derivative is described in Section 7.4. One of the
applications of this construction is to obtain explicit and computable integral
representation formulas for martingales (Section 7.2 and Theorem 7.3.4).

• Chapter 8 uses the Functional Itô Calculus to introduce Functional Kol-
mogorov equations, a new class of partial differential equations on the space of
continuous functions which extend the classical backward Kolmogorov PDE
to processes with path dependent characteristics. We first present some key
properties of classical solutions for this class of equations, and their rela-
tion with FBSDEs with path dependent coefficients (Section 8.2) and non-
Markovian stochastic control problems (Section 8.3). Finally, in Section 8.4
we introduce a notion of weak solution for the functional Kolmogorov equa-
tion and characterize square-integrable martingales as weak solutions of the
functional Kolmogorov equation.
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Notations

For the rest of the manuscript, we denote by

• S+
d , the set of symmetric positive d× d matrices with real entries;

• D([0, T ],Rd), the space of functions on [0, T ] with values in R
d which are

right continuous functions with left limits (càdlàg); and

• C0([0, T ],Rd), the space of continuous functions on [0, T ] with values in R
d.

Both spaces above are equipped with the supremum norm, denoted ‖ · ‖∞. We
further denote by

• Ck(Rd), the space of k-times continuously differentiable real-valued functions
on R

d;

• H1([0, T ],R), the Sobolev space of real-valued absolutely continuous func-
tions on [0, T ] whose Radon–Nikodým derivative with respect to the Lebesgue
measure is square-integrable.

For a path ω ∈ D([0, T ],Rd), we denote by

• ω(t−) = lims→t,s<t ω(s), its left limit at t;

• Δω(t) = ω(t)− ω(t−), its discontinuity at t;

• ‖ω‖∞ = sup{|ω(t)|, t ∈ [0, T ]};
• ω(t) ∈ R

d, the value of ω at t;

• ωt = ω(t ∧ ·), the path stopped at t; and

• ωt− = ω 1[0,t[ + ω(t−) 1[t,T ].

Note that ωt− ∈ D([0, T ],Rd) is càdlàg and should not be confused with the càglàd
path u �→ ω(u−). For a càdlàg stochastic process X we similarly denote by

• X(t), its value;

• Xt = (X(u ∧ t), 0 ≤ u ≤ T ), the process stopped at t; and

• Xt−(u) = X(u) 1[0,t[(u) +X(t−) 1[t,T ](u).

For general definitions and concepts related to stochastic processes, we refer to
the treatises by Dellacherie and Meyer [19] and by Protter [62].
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