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Abstract
The prices of index options at a given date are usually represented via the
corresponding implied volatility surface, presenting skew/smile features and
term structure which several models have attempted to reproduce. However,
the implied volatility surface also changes dynamically over time in a way
that is not taken into account by current modelling approaches, giving rise to
‘Vega’ risk in option portfolios. Using time series of option prices on the
SP500 and FTSE indices, we study the deformation of this surface and show
that it may be represented as a randomly fluctuating surface driven by a small
number of orthogonal random factors. We identify and interpret the shape of
each of these factors, study their dynamics and their correlation with the
underlying index. Our approach is based on a Karhunen–Loève
decomposition of the daily variations of implied volatilities obtained from
market data. A simple factor model compatible with the empirical
observations is proposed. We illustrate how this approach models and
improves the well known ‘sticky moneyness’ rule used by option traders for
updating implied volatilities. Our approach gives a justification for use of
‘Vega’s for measuring volatility risk and provides a decomposition of
volatility risk as a sum of contributions from empirically identifiable factors.

1. Introduction
Although the Black–Scholes formula is very popular among
market practitioners, when applied to (‘vanilla’) call and put
options it is very often reduced to a means of quoting option
prices in terms of another parameter, the implied volatility.
The implied volatility σBS

t (K, T ) of a call option with strike
level K and maturity date T actually depends on K and T ,
in contradiction with the Black–Scholes model. The function
σBS
t : (K, T ) → σBS

t (K, T )which represents this dependence
is called the implied volatility surface at date t . Specifying
the implied volatility surface at a given date is therefore

3 http://www.cmap.polytechnique.fr/˜rama/

synonymous with specifying prices of all (vanilla) calls and
puts at that date.

Two features of this surface have captured the attention
of researchers in financial modelling. First, the non-flat
instantaneous profile of the surface, whether it be a ‘smile’,
‘skew’ or the existence of a term structure, points out the
insufficiency of the Black–Scholes model for matching a set
of option prices at a given time instant. Second, the level of
implied volatilities changes with time, deforming the shape of
the implied volatility surface [11]. The evolution in time of this
surface captures the evolution of prices in the options market.

The shortcomings of the Black–Scholes option pricing
model when compared to empirical data from the options
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market have led to the development of a considerable literature
on alternative option pricing models, in which the dynamics of
the underlying asset is considered to be a nonlinear diffusion,
a jump-diffusion process or a latent volatility model. These
models attempt to explain the various empirical deviations
from the Black–Scholes model by introducing additional
degrees of freedom in the model such as a local volatility
function, a stochastic diffusion coefficient, jump intensities,
jump amplitudes etc. However, these additional parameters
describe the infinitesimal stochastic evolution of the underlying
asset while the market usually quotes options directly in terms
of their market-implied volatilities which are global quantities.
In order to see whether the model reproduces empirical
observations, one has to relate these two representations: the
infinitesimal description via a stochastic differential equation
on one hand, and the market description via implied volatilities
on the other hand.

However, in the majority of these models it is impossible
to compute directly the shape of the implied volatility surface
in terms of the model parameters. Although it is possible
to compute the implied volatility surface numerically, these
numerical studies show that simple jump processes and one
factor stochastic volatility models do not reproduce correctly
the profiles of empirically observed implied volatility surfaces
and smiles [7,10,13,40]. This problem is also reflected in the
difficulty in ‘calibrating’ model parameters simultaneously to a
set of liquid option prices on a given date: if the number of input
option prices exceeds the number of parameters (which should
be the case for a parsimonious model) a conflict arises between
different calibration constraints since the implied volatility
pattern predicted by the model does not correspond to the
empirically observed one.

This problem, already present at the static level, becomes
more acute if one examines the consistency of model dynamics
with those observed in the options market. While a model
with a large number of parameters—such as a non-parametric
local volatility function or implied tree—may calibrate well
the strike profile and term structure of options on a given
day, the same model parameters might give a poor fit at the
next date, creating the need for constant re-calibration of the
model. Examples of such inconsistencies over time have
been documented for the implied-tree approach by Dumas
et al [17]. This time instability of model parameters leads to
large variations in sensitivities and hedge parameters, which is
problematic for risk management applications.

The inability of models based on the underlying asset to
describe dynamic behaviour of option prices or their implied
volatilities is not, however, simply due to the mis-specification
of the underlying stochastic process. There is a deeper reason:
since the creation of organized option markets in 1973, these
markets have become increasingly autonomous and option
prices are driven, in addition to movements in the underlying
asset, also by internal supply and demand in the options market.
This fact is also supported by recent empirical evidence of
violations of qualitative dynamical relations between options
and their underlying [6]. This observation can be accounted
for by introducing sources of randomness which are specific to

the options market and which are not present in the underlying
asset dynamics [12].

In order to prevent the instability of model parameters
resulting from this misspecification, it is necessary for the
model to recognize these extra sources of randomness specific
to the options market and incorporate the statistical features of
their dynamics in the model. The aim of this work is to move
a step forward in this direction and identify, through the study
of dynamical features of implied volatility surfaces for two
major option markets, some of the salient dynamic properties
of option prices.

Based on an empirical study of time series of implied
volatilities of SP500 and FTSE index options, we show that
the implied volatility surface can be described as a randomly
fluctuating surface driven by a small number of factors. Using
a Karhunen–Loève decomposition, we recover and interpret
the shape of these factors and study their dynamics, in relation
to the underlying index. The implied volatility surface is
then modelled as a stationary random field with a covariance
structure matching the empirical observations. This model
extends and improves the well known ‘constant smile’ or
‘sticky delta’ model [3] used by practitioners, while matching
some salient features of implied volatility time series.

Our stochastic implied volatility model allows a simple
description of the time evolution of a set of options and provides
a rationale for Vega hedging of portfolios of options. This
modelling approach also allows us to construct a Monte Carlo
framework for simulating scenarios for the joint behaviour of
a portfolio of call or put options, leading to a considerable gain
in computation time for scenario generation.

Section 2 defines the implied volatility surface and
the parametrization used. Section 3.2 describes the non-
parametric smoothing procedure for constructing implied
volatility surfaces from data. Section 3 describes the
Karhunen–Loève decomposition and its implementation. This
method is then applied to two data sets: SP500 index options
(section 4) and FTSE index options (section 5). The stylized
empirical features of these two data sets are summarized
in section 6.1. Based on these empirical observations, a
factor model for the implied volatility surface is proposed
in section 6.2. Section 7 presents implications for risk
management, indicates potential applications and discusses
topics for further research.

2. Implied volatility surfaces
2.1. Definitions and notations

Recall that a European call option on a non-dividend paying
asset St with maturity date T and strike price K is defined as
a contingent claim with a payoff of (ST − K)+. Denoting by
τ = T − t the time remaining to maturity, the Black–Scholes
formula for the value of this call option with

CBS(St ,K, τ, σ ) = StN(d1) − Ke−rτN(d2) (1)

d1 = − lnm + τ(r + σ 2

2 )

σ
√
τ

d2 = − lnm + τ(r − σ 2

2 )

σ
√
τ

(2)
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where m = K/St is the moneyness and N(u) =
(2π)−1/2 ∫ u

−∞ exp(− z2

2 ) dz. Let us now consider, in a market
where the hypotheses of the Black–Scholes model do not
necessarily hold, a call option whose (observed) market price is
denoted by C∗

t (K, T ). The Black–Scholes implied volatility
σBS
t (K, T ) of the option is then defined as the value of the

volatility parameter which equates the market price with the
price given by the Black–Scholes formula

∃! σBS
t (K, T ) > 0,

CBS(St ,K, τ, σBS
t (K, T )) = C∗

t (K, T ).
(3)

The existence and uniqueness of the implied volatility is due to
the fact that the value of a call option as a function of volatility
is a monotonic mapping from [0,+∞[ to ]0, St −Ke−rτ [. For
fixed (K, T ), σBS

t (K, T ) is in general a stochastic process and,
for fixed t , its value depends on the characteristics of the option
such as the maturity T and the strike level K: the function

σBS
t : (K, T ) → σBS

t (K, T ) (4)

is called the implied volatility surface at date t . Using the
moneyness m = K/St of the option, one can also represent
the implied volatility surface in relative coordinates, as a
function of moneyness and time to maturity: It (m, τ) =
σBS
t (mS(t), t + τ). This representation is convenient since

there is usually a range of moneyness around m = 1 for which
the options are liquid and therefore empirical data are most
readily available.

2.2. Implied volatility as a state variable

As opposed to ‘local’ volatility, uniquely defined as the
instantaneous increment of the quadratic variation of the
underlying asset, there are a multitude of implied volatilities
associated with a given asset, one for each traded option.
Therefore, one is faced right from the start with a multivariate
problem.

Also, implied volatilities represent prices of traded options
on the same underlying asset, which are linked by various
arbitrage relations. It is therefore obvious that implied
volatilities for different strike and maturity levels cannot
evolve independently and that they form a highly correlated
multivariate system. Arbitrage restrictions on the dynamics of
implied volatilities have been discussed by Schonbucher [38]
in the case of a single implied volatility and more recently by
Ledoit and Santa Clara [31] in the case of an implied volatility
surface.

The above points seem to indicate that defining a model
in terms of implied volatility rather than local volatility may
complicate somewhat the modelling procedure. However,
using implied volatility as state variable has some important
advantages which greatly simplify the analysis.

First, implied volatilities are observable: they are directly
derived from market data without making any modelling
assumptions on the processes involved. By contrast, the local
volatility or conditional variance of returns is not directly
observable and has to be filtered out either from price data using

a conditional volatility model (e.g. GARCH) or ‘calibrated’
with options data. In the first case, the quantity obtained is
model dependent and in the second case it is the solution of a
non-trivial and ill-posed inverse problem [8, 18].

Second, implied volatilities give a representation of the
state of the option market which is familiar to the practitioner.
A market scenario described in terms of the level or behaviour
of implied volatility is easier to understand for a practitioner
than the same statement rephrased, for instance, in terms of a
local volatility or a jump intensity.

Third, shifts in the level of implied volatility are highly
correlated across strikes and maturities, which suggests that
their joint dynamics is driven by a small number of factors
and makes parsimonious modelling of their joint dynamics
possible.

Finally, implied volatility is increasingly used as a market
reference by various market participants, as attested by the
recent emergence of implied volatility indexes and derivative
instruments associated with them, and also as a market risk
indicator [32].

All these points motivate the study of the behaviour of
implied volatility surfaces as a foundation for a market-based
approach for modelling the dynamics of the options market.

2.3. Empirical study of implied volatility

At a static level, the dependence of implied volatility on
strike and maturity has been studied in many markets by
various authors. While the Black–Scholes model predicts a
flat profile for the implied volatility surface It (m, τ), it is a
well documented empirical fact that it exhibits both a non-flat
strike and term structure [11, 13, 17, 21, 25, 27, 33]. A typical
illustration is given in figure 1 in the case of SP500 index
options.

The dynamic properties of implied volatility time series
have also been studied by many authors in the literature;
however most of these studies either focus on the term structure
of at the money implied volatilities or study separately implied
volatility smiles for different maturities. In other words, they
study a cross-section of the surface in one direction, either
moneyness or maturity, while maintaining the other parameter
fixed. One then obtains a series of curves (smiles or term
structures) to which most authors apply a principal component
analysis (PCA).

The term structure of at the money implied volatilities
was studied in [27, 29, 30, 41]. In particular, Avellaneda and
Zhu [41] performed a PCA of the term structure of at-the-
money implied volatilities, modelling them with a GARCH
process. Härdle and Schmidt [29] perform a similar study on
the term structure of the VDAX and report the presence of level,
shift and curvature components in the deformation of the term
structure. Das and Sundaram [13] study the term structure of
implied skewness and kurtosis, showing that empirical patterns
differ from those predicted by simple models.

Skiadopoulos et al [39] perform a PCA of implied
volatility smiles of SP500 American options traded on the
CME for different maturity buckets and distinguish two
significant principal components. Alexander [1] performs a
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Figure 1. Typical profile of the implied volatility of SP500 options
as a function of time to maturity and moneyness, March 1999.

similar analysis but using the deviation of implied volatilities
from the at-the-money volatility. Hafner and Wallmeier [24]
study the dynamics of smile curves for DAX options. Fengler
et al [20], use a common principal components approach to
perform a joint PCA on implied volatility smiles of different
maturity buckets.

By contrast to the studies mentioned above, our aim is to
consider, following our earlier work on SP500 options [11],
the joint dynamics of all implied volatilities quoted on the
market, looking simultaneously at all available maturity and
moneyness values.

2.4. Deterministic models for implied volatility
surfaces

The observation that the implied volatility surface evolves
with time has led practitioners to develop simple rules to
estimate its evolution [14]. A commonly used rule is the ‘sticky
moneyness’ rule which stipulates that, when viewed in relative
coordinates (m, τ), the surface It (m, τ) remains constant from
day to day:

∀(m, τ), It+�t (m, τ) = It (m, τ). (5)

Another well known rule is the so-called ‘sticky strike’ rule: in
this case one assumes that the level of implied volatilities for a
given option (i.e. in absolute strike and maturity coordinates)
does not change:

∀(K, T ), σBS
t+�t (K, T ) = σBS

t (K, T ). (6)

These rules are described in more detail in [14] and [33].
Before proceeding further, let us note that the above

rules are actually deterministic laws of motion for the
implied volatility surface: given today’s option prices,
there is no uncertainty (according to these rules) as to the
value of implied volatilities tomorrow, up to errors due to
smoothing/interpolation of today’s implied volatility surface4.

4 More generally one can consider models where It (·, ·) or σBS
t (·, ·) evolve in
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Figure 2. Evolution of at the money implied volatility for SP500
options, Aug. 1999–Aug. 2001.

Unfortunately these simple rules are not verified in
practice: as shown in figures 6 and 17, the implied volatility
surface It (m, τ) has a noticeable standard deviation that
cannot be neglected when considering either hedging or risk
management of portfolios of options. Similarly, figure 2 shows
the evolution of the at-the-money implied volatility for SP500
index options: as seen in this figure, even the at the money
implied volatility, assumed to be constant or ‘slowly varying’
in the fixed smile model, fluctuates between 15 and 40% in less
than a few months. Insufficiency of this ‘fixed smile’ approach
has also been pointed out in previous studies [32, 35].

In this empirical study we precisely focus on these
fluctuations of the surface It (m, τ): what is the nature of
these fluctuations? How can they be quantified, modelled in a
parsimonious fashion and simulated in a simple way?

3. Methodology
We first describe in section 3.1 the data sets used. From the data
we construct a time series of smooth surfaces, via a procedure
described in section 3.2. This time series of smooth surfaces
is then modelled as a stationary random surface to which we
apply a Karhunen–Loève decomposition: section 3.3 presents
the method and section 3.4 discusses how it is applied to the
analysis of implied volatility surfaces.

3.1. Data sets

The data sets studied contain end-of-day prices of European-
style call and put options on two major indices: the SP500
index and the FTSE 100 index. We observe every day implied
volatilities for traded options It (mi, τi), i = 1 . . . n where n is

a deterministic way. In a detailed study Balland [3] shows that in fact the only
arbitrage-free models in which σBS

t (·, ·) is deterministic are Black–Scholes
models with deterministic (that is, time dependent but not strike dependent)
volatility. He also shows that if It is deterministic then the underlying risk
neutral dynamics is a process with independent log-increments.
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Figure 3. Distribution of observations with respect to moneyness
and time to maturity: SP500 options.

the number of options actively traded on that day. Typically
n is around 100. Time to maturity τ range between a month
and a year. Moneyness values outside the interval [0.5, 1.5]
are filtered out since the numerical uncertainty on implied
volatility may be too high and the liquidity very low. All
options used are out of the money options: calls are used for
m > 1, puts for m < 1. These are precisely the options
which contain the most information about implied volatility
movements.

Implied volatilities are observed for a discrete set of
moneyness and time to maturity values; the grid of observation
is both irregular and changing with time as the level of the
underlying fluctuates. Figure 3 shows the distribution of the
number of observations as a function of the level of moneyness
and time to maturity. As illustrated in this figure, the number
of traded strikes decreases as we move far from the money and
as time to maturity increases. Also, the maximum number of
observations occurs at the money (m = 1) and not forward-
at-the-money (m = −rτ ) which would create a linear bias
in the position of the peak as τ increases. Also, the number
of observations does not seem to be skewed towards m > 1
or m < 1 (this would advocate for example the use of log-
moneyness instead of moneyness). Hence the choice of m as
coordinate seems reasonable.

Similar properties are observed for FTSE options
(figure 15).

3.2. Construction of smooth volatility surfaces

In order to obtain an implied volatility for arbitrary strikes and
maturities, the practice is to interpolate or smooth the discrete
data. This can be done either with a parametric form or in a
non-parametric way. For instance, it is common practice in
many banks to use (piecewise) polynomial functions to fit the
implied volatility smile [17]. These choices are driven more
by convenience than by any fundamental consideration. Given
the absence of arguments pointing to a specific parametric
form, the approach we have used here is a non-parametric

one: the filtered data set is used to construct for each day
a smooth estimator of the implied volatility surface, defined
on a fixed grid, using a non-parametric Nadaraya–Watson
estimator [2, 28]:

Ît (m, τ) =
∑n

i=1 It (mi, τi)g(m − mi, τ − τi)∑n
i=1 g(m − mi, τ − τi)

(7)

where g(x, y) = (2π)−1 exp(−x2/2h1) exp(−y2/2h2) is a
Gaussian kernel. It is simply the convolution of the observed
data points with the smoothing kernel g. The choice of the
Gaussian kernel instead of another kernel does not influence
the results very much. The important parameters are the
bandwidth parameters h1, h2, which determine the degree of
smoothing. Too small values will lead to a bumpy surface, too
large ones will smooth away important details. The bandwidth
can be determined using a cross-validation criterion [28]. A
more efficient method is to use an adaptive bandwidth estimator
in order to obtain an ‘optimal’ bandwidth h [9, 23]. Large
sample properties of these estimators have been extensively
studied, we refer to the monograph by Härdle [28] or to [2].

We thus obtain a daily time series (It (m, τ), t = 0 . . . N)

of smooth implied volatility surfaces I : [mmin,mmax] ×
[τmin, τmax] → [0,∞[ to which we apply an analysis of
variance, described in the next section. Note that τmin > 0: it is
around 2 weeks. In particular, we do not use points very close
to maturity since it is well known that, in this range, implied
volatilities may have highly irregular behaviour which makes
them unexploitable for risk management purposes. Also,
we do not attempt to extrapolate to τ = 0 since such an
extrapolation will highly depend on the (arbitrary) choice of
the estimator.

3.3. Principal component analysis of random
surfaces

In order to analyse the joint dynamics of all implied volatilities,
we model the implied volatility surface as a stationary random
field, to which we apply a Karhunen–Loève decomposition.
The Karhunen–Loève decomposition is a generalization of
PCA to higher dimensional random fields. Let A =
[mmin,mmax]×[τmin, τmax] be the range of values of moneyness
and time-to-maturity.

A surface parametrized by A ⊂ R2 is a smooth map
u : A → R. For two surfaces u, v define the scalar product
〈u, v〉 by

〈u, v〉 =
∫
A

u(x)v(x) dx (8)

where x = (m, τ) designates a point in the money-
ness/maturity plane. LetU(ω, x), x ∈ Abe a two-dimensional
real-valued random field, defined as a family of random vari-
ables indexed by a two-dimensional parameter x ∈ A, such
that each realization of the random field U is a smooth sur-
face U(ω, ·) : A → R. One can then view the random field
U(ω, x) as a random surface U(ω, ·).

Viewing U as a family of real-valued random variables,
one may define the covariance coefficients of two points on the
surface as

K(x1, x2) = cov(U(x1), U(x2)) x1, x2 ∈ A. (9)

49



R Cont and J da Fonseca QUANTITATIVE FI N A N C E

The function K(x1, x2), x1, x2 ∈ A is analogous to the
covariance matrix of a random vector. One may also define the
correlation coefficients C(x1, x2). The covariance coefficients
define the kernel of an integral operator K acting on a surface
u through

Ku(x) =
∫
A

K(x, y)u(y) dy. (10)

K is a bounded symmetric positive operator; its eigenvectorsfn
define an orthonormal family (fn). Let ν2

1 � ν2
2 � · · · � 0 the

associated eigenvalues: K ·fn = ν2
nfn. Each eigenfunction fn

is therefore a surface fn : A ⊂ R2 → R which is the solution
of a Fredholm integral equation defined by the kernel K:∫

K(x, y)fn(y) dy = ν2
nfn(x). (11)

The singular value decomposition of the covariance operator
K can translate into a decomposition of the kernel K:

K(x1, x2) =
∑

ν2
nfn(x1)fn(x2). (12)

LetUn(ω, x) = 〈U(ω, ·), fn〉 be the (random) projection of the
random surfaceU on the eigenfunctionfn. By orthogonality of
the (fn), (Un) is a sequence of uncorrelated random variables
and

U(ω, ·) =
∑

Un(ω)fn(·) =
∑

Unfn. (13)

Equation (13), which expresses the random field U as
a superposition of uncorrelated random variables (Un ·
fn), each of which is the product of a scalar random
variable with a deterministic surface, is called the Karhunen–
Loève decomposition of the random surface U . Note
that the random variables (Un · fn) are orthogonal both as
random variables—elements of L2(&, P )—and as surfaces—
elements of L2(A)—which makes the Karhunen–Loève
decomposition very convenient for computational purposes.

3.4. Karhunen–Loève decomposition: numerical
implementation

Given the high autocorrelation, skewness and positivity
constraints on the implied volatility itself, we apply the
above approach to the daily variations of the logarithm of
implied volatility �Xt(m, τ) = ln It (m, τ) − ln It−1(m, τ).
First, we use market implied volatilities to produce a
smooth implied volatility surface It (m, τ) using the non-
parametric procedure described in section 3.2. Next, we
compute the daily variation of the logarithm of implied
volatility for each point on the surface: �Xt(m, τ) =
ln It (m, τ)− ln It−1(m, τ). We then apply a Karhunen–Loève
decomposition to the random field Ut(m, τ) = �Xt(m, τ).
To this end, we compute the sample covariance coefficients
K(m, τ,m′, τ ′) = cov(Ut (m, τ), Ut (m

′, τ ′)), which specify
the covariance operator K.

Formally, we are faced with an eigenvalue problem for an
operator in a function space. In order to solve the problem
numerically, we reduce it to a finite-dimensional one using
a Galerkin procedure for the Fredholm equation (11), as

described below. Choosing a family of smooth functions
(surfaces) (hn), one expands each eigenfunction on this basis:

fi(m, τ) =
N∑
n=1

aijhj (m, τ) + εN . (14)

For example, one can choose as approximation functions
(hj ) spline functions, commonly used for interpolating
volatility surfaces and yield curves in financial applications.
Substituting the truncated sum into equation (11) yields an
error term

εN =
N∑

n=1

aij

( ∫
A

dm′ dτ ′K(m,m′, τ, τ ′)hj (m
′, τ ′)

−ν2
j hj (m, τ)

)
.

The Galerkin method consists in requiring that the error εN be
orthogonal to the approximating functions (hn, n = 1 . . . N):

∀j = 1 . . . N, 〈εN, hj 〉 = 0

⇐⇒
N∑

n=1

aij

[ ∫
A

dx hi(x)

∫
A

dx ′K(x, x ′)hj (x
′)

−ν2
j

∫
A

dx hi(x)hj (x)

]
= 0.

Using matrix notation

A = [aij ] (15)

Bij = 〈hi, hj 〉 (16)

Cij =
∫
A

dm dτ
∫
A

dm′ dτ ′hi(m, τ)K(m,m′, τ, τ ′)hj (m
′, τ ′)

(17)
D = diag(ν2

i , i = 1 . . . N) (18)

the orthogonality condition (15) can be rewritten

CA = DBA (19)

where C and B are symmetric positive matrices, computed
from the data. Numerically solving the generalized eigenvalue
problem (19) for D and A and substituting the coefficients
of A in (14) yields the eigenmodes fk . D yields their
associated variances ν2

k . We then compute the projection xk(t)

of Xt(m, τ) on the eigenmode fk:

xk(t) = 〈Xt − X0, fk〉 =
∫
A

Xt(m, τ)fk(m, τ) dm dτ (20)

and analyse the scalar time series (xk(t), t = 1 . . . N)

(principal component processes). The surface then has the
representation

It (m, τ) = I0(m, τ) exp

( ∑
k

xk(t)fk

)
. (21)

Finally, we analyse the correlation between the movements
in implied volatilities and the underlying asset returns by
computing the correlation coefficients between �xk(t) =
xk(t)−xk(t−1) and the underlying returns ln S(t)−ln S(t−1)
for each principal component k.

We now describe the results obtained by applying this
technique to two sets of data: SP500 index options (section 4)
and FTSE index options (section 5).
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Figure 4. Average implied volatility surface for SP500 options.
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Figure 5. Average log-implied volatility surface, SP500 options.

4. Empirical results for SP500 index
options
The first data set contains end of day prices for all traded
European style call and put options on the SP500 index
between 2 March 2000 and 2 February 2001. These options are
traded on the Chicago Board of Options Exchange and differ
from the American style options, studied in [39], traded on the
Chicago Mercantile Exchange.

Using the time series of smooth volatility surfaces
estimated via the procedure described in section 3.2, we
compute the sample average of the random volatility surface
It (m, τ), shown in figure 4. Here the average implied volatility
is shown as a function of time to maturity in years and
moneyness m = K/S(t). The figure shows a decreasing
profile in moneyness (‘skew’) as well as a downward sloping
term structure.

Figure 5 shows the surface obtained when logarithms of
implied volatilities are taken before averaging. Note that, while
the skew persists, the term structure is less pronounced. This
remark also pleads in favour of studying logarithms of implied
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Figure 6. Daily standard deviation of SP500 implied volatilities as
a function of moneyness and time to maturity.
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Figure 7. Sorted eigenvalues of covariance operator as a function
of their rank for daily variations of SP500 implied volatilities.

volatilities instead of volatilities themselves.
The sample standard deviation of implied volatilities,

shown in figure 6, illustrates that the surface is not static and
fluctuates around its average profile. This figure can also be
seen as a test of the the ‘fixed smile’ model [3], which would
predict a small or negligible variability in implied volatilities,
plotted in moneyness coordinates. Clearly this is far from
being the case. More precisely, the daily standard deviation
of the implied volatility can be as large as a third of its typical
value for out of the money options, resulting in an important
impact on option prices.

The eigenvalues ν2
k decay quickly with k (figure 7),

showing that a low-dimensional factor model gives a good
approximation for the dynamics of the surface. In fact the first
three eigenmodes account for 98% of the variance, so in what
follows we shall focus on their properties only.

The shape of the first eigenmode is shown in figure 8.
All of its components are positive: a positive shock in the
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Figure 8. First eigenmode of daily implied volatility variations for
SP500 index options. This eigenmode, which accounts for around
80% of the daily variance of implied volatilities, can be interpreted
as a level effect.
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Figure 9. Time evolution of the projection x1(t) of SP500 implied
volatilities on the first principal component.

direction of this eigenmode results in a global increase of all the
implied volatilities: it may therefore be interpreted as a ‘level’
factor. Figure 9 shows the projection x1(t) of the surface on this
eigenmode: it is observed to have a mean-reverting behaviour
with a typical mean-reversion time of around a month.
Figure 10 shows the autocorrelation function of the principal
component process x1(t): the autocorrelation coefficients are
significantly positive up to a month, showing persistence
in the values of the principal component process. As the
partial autocorrelation coefficients show, this persistence can
be conveniently represented by a low-order autoregressive
process: an AR(1)/Ornstein–Uhlenbeck process already
captures most of the persistence. Estimating an AR(1) process
on the series gives an autoregression constant of 0.965 which
gives a mean reversion time of 28 days. This time scale should
be compared with the maturity of liquid options which is
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Figure 10. Top: in blue, autocorrelation function of x1(t); in red,
decaying exponential with time constant of 28 days. Bottom: partial
autocorrelation coefficients. Time unit: days.

around 3 months: they are both of the same magnitude showing
that mean reversion of implied volatility is neither ‘slow’ nor
‘fast’ but happens at the time scale of the option maturity.

Movements along this eigenmode, which account for
around 80% of the daily variance, have a strong negative
correlation with the underlying index returns. This observation
is consistent with the so-called leverage effect: the overall
negative correlation of implied volatility and asset returns.
Note also that although the dependence in τ is weak, it is not
zero, and multiplying the surface by a constant can amplify this
dependence. Since the variance is large along this direction,
large movements along this direction can induce term structure
fluctuations.

The second eigenmode, in contrast, changes sign at the
money: the components are positive for m > 1 and negative
for m < 1 (figure 11). A positive shock along this direction
increases the volatilities of out of the money calls while
decreasing those of out of the money puts. By biasing the
implied volatilities towards high strikes, positive movements
along this direction increase the skewness of the risk neutral
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Figure 11. Second eigenmode of daily implied volatility variations
for SP500 index options.
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Figure 12. Top: time evolution of the projection x2(t) of SP500
implied volatilities on the second principal component. Bottom:
daily increments �x2(t). Time unit: days.

density. Note also that this mode exhibits a systematic
slope with respect to maturity, which accounts for the term
structure observed above5 (figure 6). Figure 12 shows the
evolution of the projection of the surface on this eigenmode.
Again, it exhibits a mean-reverting behaviour but with more
intermittency, showing jumps and spikes. Inspection of the
partial autocorrelation function, shown in figure 13, shows that
the correlation structure can be well approximated by an AR(1)
process. Estimation of an AR(1) model gives an autoregression
coefficient of 0.924 which corresponds to a mean reversion
timescale of 12.6 days.

In contrast to what was observed for the first eigenmode,
movements along this eigenmode are only weakly correlated
with the underlying returns. This suggests that the leverage
effect is not a general feature of implied volatility movements
but is related to movements in the general level of implied
volatilities, while relative movements of implied volatilities
can be decorrelated with respect to the underlying. For a fixed
maturity, the cross sections of this mode correspond to the
shape found by Skiadopoulos et al [39] on another data set
(SP500 futures options traded on the CME).

The third eigenmode, shown in figure 14, is a ‘butterfly’
mode which is interpreted as a change in the convexity of the
surface, accompanied by a downward sloping term structure
which biases the magnitude of the fluctuations towards short
term implied volatilities. In terms of risk, movements along
this direction contribute to the ‘fattening’ of both the tails of
the risk neutral density. This component only contributes to
0.8% of the overall variance.

Table 1 gives summary statistics for the time series of the
first three principal component processes. Each of them is
highly autocorrelated and mean-reverting with a mean rever-
sion time close to a month: figures 9 and 12 illustrate the sam-
ple paths. Inspection of the partial autocorrelation functions
show that the autocorrelation structures (shown in figures 10
and 13) are well approximated by AR(1)/Ornstein–Uhlenbeck
processes. Although the unconditional distributions are not
Gaussian (all series have excess kurtosis and some skewness),
the deviation from normality is mild. Similar results were
found for DAX options in [24]. Also, none of these factors is
perfectly correlated with the underlying returns. The largest
(negative) correlation value is between the underlying and the
first factor, corresponding to a value of −66%, but still remains
significantly smaller than 1. Movements in other directions,
which reflect changes in the shape of the surface, seem to have
little correlation with the underlying asset.

5. Empirical results for FTSE options
In this section we present the results obtained when applying
the methods described in section 3 to a database of FTSE 100
index options. The options under study are European call
and put options on the FTSE 100 index (ESX options). The
database contains more than 2 years of daily transaction prices
and quoted Black–Scholes implied volatilities for all quoted

5 Actually figure 11 shows a downward sloping term structure but recall that
eigenmodes are defined up to a sign and normalization so the sign is irrelevant.
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Table 1. Summary statistics for principal component times series: SP500 index options.

Daily Proportion Mean Correlation
standard of Kurtosis Skewness reversion with

Eigenmode deviation variance (%) (1 day) (1 day) time (days) underlying

1 0.10 94 6.4 0.4 28 −0.66
2 0.09 3 7.9 0.15 12.6 �0
3 0.05 0.8 7.8 0 22 0.27
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Figure 13. 2nd principal component process, SP500 implied
volatilities. Top: autocorrelation function of x2(t) (blue) compared
to exponential decay (red) with a time constant of 12.6 days.
Bottom: partial autocorrelation coefficients of x2(t).

options on the LIFFE6 market (Aug.–Sept. 2001). Maturities
range from one month to more than a year, moneyness levels
from 50 to 150% with respect to the underlying. Observations
are unevenly distributed in time-to-maturity and moneyness.
Figure 15 shows the frequency of observations for a given
moneyness and time to maturity as a function of these two
variables, obtained via a non-parametric kernel estimator; it
has a shape similar to the one observed for SP500 options (see

6 London International Financial Futures Exchange.
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Figure 14. Third eigenmode of daily implied volatility variations
for SP500 index options.
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Figure 15. Distribution of observations with respect to moneyness
and time to maturity: FTSE options.

section 3.1).
As in the preceding section, we first construct a time series

of smooth surfaces by using the non-parametric smoothing
procedure used in section 3.2. We then perform an analysis of
some of the dynamical properties of the smoothed time series.

We first compute the sample mean of the surface. The
average profile of the implied volatility surface is shown in
figure 16, on a logarithmic scale. As in the case of the
SP500 index options, it displays a strong skew, the implied
volatility decreasing as a function of moneyness, as well as
some curvature in the moneyness direction. Note that the term
structure is relatively flat. However, as seen from the standard
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Figure 16. Average profile of FTSE implied volatility surface.
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Figure 17. Standard deviation of daily variations in FTSE implied
volatilities.

deviation of their daily log-increments (figure 17), the daily
variations of implied volatilities do display a systematic term
structure: short term implied volatilities fluctuate more than
longer ones.

Applying the Karhunen–Loève decomposition (section 3)
to the daily log-variations of the implied volatility yields
the eigenmodes (principal components) and their associated
eigenvalues (variances). We then project the implied volatility
surface each day on each eigenmode and study the principal
component time series thus obtained.

The variances, ranked in decreasing order, decrease very
quickly: as in the case of SP500 index options, the variance
of daily variations is well captured by the first three principal
components which account for more than 95% of the observed
daily variations.

The shape of the dominant eigenmode is shown in
figure 18. This eigenmode contains around 96% of the daily
variance. Similarly to the first eigenmode for the SP500
surface, all of its components are positive: a positive shock
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Figure 18. First eigenmode of daily implied volatility variations for
FTSE index options.
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Figure 19. Projection x1(t) on first eigenmode, FTSE options.

in the direction of this eigenmode results in a global increase
of all the implied volatilities: it may therefore be interpreted
as a ‘level’ factor. The projection of the implied volatility
surface on this eigenmode is shown in figure 19: this time
series is highly persistent mean-reverting. The one day lagged
partial autocorrelation coefficient is significant and falls to
insignificant levels after 1 day, pointing to an AR(1) correlation
structure. Estimating an AR(1) model on the data gives an
autocorrelation coefficient of 0.9808 which corresponds to a
mean reversion time of 51 days, reflecting a high degree of
persistence. The autocorrelation function, shown in figure 20,
is well represented by the corresponding exponential decay
over a timescale of 51 days. As in the case of the SP500
options, the mean reversion time is close to the lifetime of an
option, not much shorter nor longer.

The second eigenmode, shown in figure 21, reveals a
clear slope effect: the signs of the coordinates are negative for
moneyness levels m < 1 (out of the money puts) and positive
form > 1 (out of the money calls), changing sign at the money.
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Table 2. Statistics for principal component times series: FTSE options.

Daily Proportion Kurtosis Mean Correlation
standard of of �xk reversion with

Eigenmode deviation variance (%) (1 day) time (days) underlying

1 2.9 96 9.3 51 0.7
2 0.43 2 5.7 65 0.08
3 0.27 0.8 7.5 81 0.7
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Figure 20. Top: partial autocorrelation coefficients of the
projection of FTSE implied volatilities on the first principal
component. Bottom: autocorrelation function of x1(t) compared to
an exponential decay with time constant = 51 days. Time unit: days.

A positive shock in this direction therefore results in a decrease
in the prices of out of the money puts accompanied by a rise
in the prices of out of the money calls. In terms of the risk
neutral distribution it corresponds to a (positive) increase in
the skewness.

The third eigenmode, shown in figure 24, again represents
changes in the curvature/convexity of the surface in the strike
direction, associated with a smaller slope effect in the maturity
direction.

Table 2 gives summary statistics for the time series of the
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Figure 21. Second eigenmode of daily implied volatility variations
for FTSE index options.

first three factor loadings. As in the case of SP500 options,
they exhibit persistence and mean reversion. Their correlation
structure is well approximated by an AR(1) process with
mean reversion times around two months. However, for the
second and third principal components both the unconditional
distributions and the distribution of residuals have significant
non-Gaussian features and exhibit intermittency, suggesting
the use of an AR(1) model with non-Gaussian noise.

6. A mean reverting factor model for the
implied volatility surface
6.1. Summary of empirical observations

Let us now summarize the statistical properties of implied
volatility surfaces observed in these two data sets:

(1) Implied volatilities display high (positive) autocorrelation
and mean reverting behaviour.

(2) The variance of the daily log-variations in implied
volatility can be satisfactorily explained in terms of a small
number of principal components (two or three).

(3) The first eigenmode reflects an overall shift in the level of
all implied volatilities.

(4) The second eigenmode reflects opposite movements in
(out of the money) call and put implied volatilities.

(5) The third eigenmode reflects changes in the convexity of
the surface.
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Figure 22. Projection x2(t) on second eigenmode, FTSE options.

(6) Movements in implied volatility are not perfectly
correlated with movements in the underlying asset.

(7) Shifts in the global level of implied volatilities are
negatively correlated with the returns of the underlying
asset.

(8) Relative movements of implied volatilities have little
correlation with the underlying.

(9) The projections of the surface on its eigenmodes
(principal component processes) exhibit high (positive)
autocorrelation and mean reversion over a timescale close
to a month.

(10) The autocorrelation structure of principal component
processes is well approximated by the AR(1)/Ornstein–
Uhlenbeck process.

Similar results have also been obtained for DAX options,
omitted here for the sake of brevity.

6.2. A factor model for the implied volatility surface

Based on these empirical results, we propose a flexible class of
factor models which is compatible with these observations: in
our framework the implied volatility surface is directly used as
the state variable and modelled as a stationary random surface
evolving in a low-dimensional manifold of surfaces. The (log-)
implied volatility surface Xt(m, τ) is represented by the sum
of the initial surface and its fluctuations along the principal
directions (fk, k = 1 . . . d):

ln It (m, τ) = Xt(m, τ) = X0(m, τ) +
d∑

k=1

xk(t)fk(m, τ)

(22)
〈fj , fk〉 = δj,k xk(t) = 〈Xt − X0, fk〉 (23)

where X0(m, τ) = ln I0(m, τ) is a constant surface and the
components xk are Ornstein–Uhlenbeck processes driven by
independent noise sources Zk , which can be Wiener or jump
processes:

dxk(t) = −λk(xk(t) − xk) dt + γk dZk(t). (24)
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Figure 23. Top: time evolution of the projection of FTSE implied
volatilities on the second principal component. Bottom:
autocorrelation function of x2(t) (blue) compared with exponential
decay with a time constant of 51 days (red). Time unit: days.

Here λk represents the speed of mean reversion along the
kth eigenmode, xk the long-term average value and γk is
the volatility of implied vols along this direction. The
‘constant smile’ or ‘sticky delta’ model corresponds to
the case where It = I0, i.e. where xk(t) = 0. Our
factor model is therefore an extension of the sticky delta
model.

In the stationary case, these parameters are simply related
to the empirical observations: denoting by ν2

k the variance of
the kth principal component, then

xk = 〈X − X0, fk〉 (25)

ν2
k = γ 2

k

2λk
(26)

corr(xk(t), xk(t + s)) = exp(−λks) (27)
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Figure 24. Third eigenmode of daily implied volatility variations
for FTSE index options.

Table 3. Estimation results for factor model.

Data set λ1 λ2 λ3

SP500 0.035 0.08 0.045
FTSE 0.0193 0.0152 0.0122

and may be estimated from discrete observations xk(t), t =
0, 1, 2 . . . of the principal component processes: indeed, under
the above hypothesis xk follows an AR(1) process:

xk(t + 1) = e−λkxk(t) + (1 − e−λk )xk + σkε
k(t) (28)

ε(t) IID noise σk = γk

√
1 − exp(−λk)

2λk
. (29)

Estimation of the coefficients was done using a general
method of moments procedure using the discrete observations
xk(t), t = 1, 2, . . . , T . Estimation results are shown in table 3.
In the case where Zk are independent Wiener processes,
the implied volatilities have a log-normal distribution, which
both ensures positivity and is consistent with many empirical
observations in the literature.

6.3. Dynamics of option prices

An interesting feature of using implied volatilities as state
variables is that the price of any call option Ct(T ,K) is simply
given by the Black–Scholes formula

Ct(K, T ) = CBS(St ,K, τ, σBS
t (K, T ))

= CBS

(
St ,K, τ, It

(
K

St
, T − t

))
(30)

and the continuous-time dynamics of Ct(K, T ) may be
computed by applying Ito’s lemma to equation (30) [12]. This
allows to compute Vega hedge ratios and generate scenarios
for call/put options directly using the factor model (22). This
should be contrasted for example with the approach of Derman
and Kani [15] where the local volatility surface is modelled as
a random surface: in this case the impact on option prices is
complicated and non-explicit.

Arbitrage constraints for this type of model were first
discussed in a risk-neutral framework by Schönbucher [38]
(see also [31]). However, in the case where the state variable
is the whole volatility surface some care must be taken
to define properly the available instruments and strategies
in order to remain in the realm of applicability [12]. In
contrast here we have studied the historical dynamics of
call or put options: of course, this is the relevant point of
view from a risk management perspective. Our approach
bridges the gap between risk-neutral approaches [15, 31, 38]
and the empirical work on historical dynamics of implied
volatility [1,20,24,29,39,41] and allows automatic adjustment
to today’s option prices which are simply calibrated to the
initial condition I0(m, τ): X0(m, τ) = ln I0(m, τ). The link
between the historical and risk neutral approaches is discussed
in more detail in [12].

7. Applications and extensions
We have presented in this work an empirical analysis of
historical co-movements of implied volatilities of options
on the SP500 and FTSE indices. Using a Karhunen–
Loève decomposition, we have shown that these fluctuations
can be accounted through a low-dimensional, but not one-
dimensional, multifactor model. We have extracted and
interpreted the shapes of the principal component surfaces
and showed that the principal component processes exhibit
a mean reverting autoregressive behaviour similar to that of an
Ornstein–Uhlenbeck process.

Of course the behaviour of these time series can be
studied in more detail, going beyond second-order statistics
and examining effects obtained by conditioning on various
variables. However, already at this level, there are several
interesting implications and potential applications, some of
which we enumerate below.

7.1. The nature of volatility risk

An interesting feature of our data is that there appears to be
more than one factor present in the movements of implied
volatilities and these factors are not perfectly correlated with
the underlying asset. While this may appear as no surprise
to operators in the options market that implied volatilities
of different strikes do not vary in unison, it is clearly not a
feature of one-factor ‘complete’ market models which attempt
to explain all movements of option prices in terms of the
underlying asset. In other words: ‘Vega’ risk cannot be
reduced to ‘Delta’ risk.

The presence of more than one factor also shows that
bivariate stochastic volatility models may lack enough degrees
of freedom to explain co-movements of implied volatilities
other than general shifts in their level.

7.2. Relation with stochastic volatility models

Any stochastic model for instantaneous volatility also implies
a model for the deformation of the implied volatility surface.
This correspondence may be, however, very non-explicit [22,
34]. It would nevertheless be interesting to compare our
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empirical findings with the dynamics of implied volatility
surfaces in ‘traditional’ stochastic volatility models [4, 22], at
least on a qualitative or numerical basis.

7.3. Quantifying and hedging volatility risk

Our model allows a simple and straightforward approach to
the modelling and hedging of volatility risk, defined in terms
familiar to practitioners in the options market, namely that of
Vega risk defined via Black–Scholes Vegas. It also suggests a
simple approach to the simulation of scenarios for the joint
evolution of a portfolio of call and put options along with
their underlying asset. Such approaches have already been
considered in the case where the at-the-money implied vol is
perturbated by random shocks while the shape of the smile is
fixed: Malz [32] uses this approach for stress-testing; see also
Rosenberg [35]. Our framework allows an extension to the
case of a random smile/surface. These points shall be studied
in a forthcoming work [12].

7.4. Generating scenarios for option portfolios

Given a stochastic model for the joint behaviour of the
underlying and its implied volatility surface, one can in
principle generate scenarios and compute confidence intervals
for future values of the implied volatility. Given the monotonic
relation between implied volatility and option prices, this
can allow us to compute confidence intervals for the values
of various call and put options and portfolios composed of
these instruments. This may be an interesting approach for
computing confidence intervals for future scenarios in the
option market, but needs a more detailed characterization of
the link between the underlying asset dynamics and that of the
option market, perhaps going beyond covariance measures as
we have done above.

7.5. Dynamics of volatility indices

Another field in which this approach has potentially interesting
applications is the hedging and risk management of ‘volatility
derivatives’ such as options on an implied volatility index.
There are several such market indices at present: VIX (CBOE),
VDAX (Frankfurt) and VXN (Nasdaq) are some examples.
Such an index, if well diversified across strikes and maturities,
will be sensitive to the factors described above (mainly the first
factor).

In summary, we find that the study of dynamics of implied
volatility surfaces points to the possibility of a simple dynamic
representation which seems to have interesting applications
and links with other topics in financial econometrics and option
pricing theory. We hope to pursue some of these research topics
in the near future.
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