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Motivated by stylized statistical properties of interest rates, we propose a modeling
approach in which the forward rate curve is described as a stochastic process in a space
of curves. After decomposing the movements of the term structure into the variations of
the short rate, the long rate and the deformation of the curve around its average shape,
this deformation is described as the solution of a stochastic evolution equation in an
infinite dimensional space of curves. In the case where deformations are local in matu-
rity, this equation reduces to a stochastic PDE, of which we give the simplest example.
We discuss the properties of the solutions and show that they capture in a parsimonious
manner the essential features of yield curve dynamics: imperfect correlation between
maturities, mean reversion of interest rates, the structure of principal components of
forward rates and their variances. In particular we show that a flat, constant volatility
structures already captures many of the observed properties. Finally, we discuss param-
eter estimation issues and show that the model parameters have a natural interpretation
in terms of empirically observed quantities.

Keywords: Term structure of interest rates; forward rates; multifactor models; Hilbert
space; stochastic PDE; random field.

Measuring the risk of fixed income portfolios requires a correct representation of the
statistical properties of interest rate fluctuations and the ability to simulate realistic
scenarios for future changes in the yield curve. This task is made difficult by the
multivariate and correlated nature of interest rate movements: the state variable is
not simply a set of numbers but a curve — the forward rate curve — with certain
geometric and dynamic properties.

Our objective in this paper is to present a model of term structure movements
which is both analytically tractable and reproduces the stylized empirical observa-
tions on interest rates with a small number of parameters. Our approach, inspired
by the empirical observations of Bouchaud et al. [5, 6] (see also [3, 27]), is to rep-
resent the forward rate term structure as a randomly fluctuating curve subject to
noise. Using Musiela’s parametrization, we introduce a family of models in which
the forward rate process is represented as a random field governed by a second
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order stochastic PDE. Our approach accounts for the fact that only a small number
of factors seem to govern the covariance structure of term structure movements,
without imposing ad hoc restrictions on the number of factors driving different
rates or the form of the volatility functions. More importantly, the shapes and vari-
ances of principal components are obtained as a result of the model rather than an
input.

The paper is structured as follows. Section 1 discusses the motivation for our
model in relation with empirical observations on variations in interest rates. Based
on these observations, we discuss in Sec. 2 the ingredients one should incorporate
into an interest rate model in order to reproduce the observed statistical properties
and propose give a mathematical formulation in terms of a stochastic evolution
equation in a space of functions. In the case where only local deformations are
allowed, this equation reduces to a stochastic partial differential equation: we study
a simple example of such an evolution equation in Sec. 3 and show that, albeit
its rudimentary structure, it reproduces many properties of term structure defor-
mations in a simple manner. This formulation is compared with the alternative
hyperbolic formulation: we show that a hyperbolic SPDE would lead to empirically
undesirable features for yield curve dynamics.

1. Term Structure Models in the Light of Empirical Facts

1.1. Risk-neutral vs statistical modeling

There are various motivations for modeling term structure dynamics. The first is
concerned with the pricing of interest rate derivative securities. In this context,
which has been the principal motivation behind term structure models in the math-
ematical finance literature [17, 31], the main concern has been the development of
“coherent” — in the sense of arbitrage-free — pricing criteria for securities whose
payoffs depend on movements of interest rates.

The second motivation is the statistical description of the fluctuations of inter-
est rates in view of risk measurement and management or optimization of trading
strategies in the fixed income market. In contrast to the preceding approach where
the emphasis is on cross-sectional coherence of prices given by the model, here the
emphasis is on describing and reproducing as closely as possible the observed time
evolution of interest rates from a statistical point of view. Such an approach is use-
ful if one is interested in simulating evolution scenarios for yield curves, calculating
Value-at-Risk of fixed-income positions but also from a theoretical point of view,
to gain a better understanding of interest rate fluctuations and their relations to
other economic variables.

From a mathematical point of view, the first approach corresponds to modeling
the dynamics of interest rates under a risk-neutral (or forward-neutral) measure, in
coherence with a cross section of observed option prices, while the second approach
corresponds to the modeling of real-world dynamics of interest rates, based on
historical observations.
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Most of the existing work in the mathematical finance literature on interest
rate modeling has emphasized the modeling of arbitrage-free yield curve dynamics
under a “risk-neutral” measure. The reason for this trend is that, contrarily to a
stock market, in a bond market the future values of many securities — zero coupon
bonds — are known with certainty. The observability of the contemporaneous prices
of these bonds then makes it possible to calibrate a model for the risk-adjusted
dynamics of interest rates directly to the observed bond prices. However, as pointed
out by various authors (e.g., [26, pp. 201–204]), once the risk-adjusted dynamics has
been calibrated it is not obvious that such a model will tell us anything useful about
the real-world dynamics of interest rates.

In principle, the risk neutral measure described by HJM models and the statis-
tical measure describing the real dynamics of interest rates should be equivalent:
a typical scenario simulated with a risk-neutral model could then be viewed as a
possible, and hopefully typical, scenario for the future evolution of the yield curve.
However, it turns to be difficult to account for a series of empirical facts observed in
studies on the term structure of interest rates [5] in the framework of arbitrage-free
term structure models. On one hand, it seems that the constraints implied by the
absence of arbitrage in these models are so restrictive that the latter is obtained at
the detriment of a correct representation of the dynamics of the yield curve [6]. For
example, arbitrage-free interest rate models imply that long term rates never fall
[12, 13] (i.e., increase almost-surely), a property which has no empirical counterpart
i.e., fails to hold “almost-surely” under the real-world measure. On the other hand,
some stylized empirical facts, such as the structure of principal components and the
magnitudes of their variances, seem to have no theoretical counterpart in arbitrage-
free (HJM) models: reproducing them requires introducing as many parameters as
there are properties to be explained or postulating non-intuitive functional forms
for the volatility of forward rates [21].

1.2. Statistical properties of term structure movements

As in any modeling approach, empirical observations should be the starting point
in the construction of stochastic term structure models. We summarize below some
important empirical facts about movements in interest rates (see [5, 6, 20, 27]):

1. Mean reversion: unlike stock prices, interest rates revert to a long term aver-
age. This behavior has resulted in models where interest rates are modeled as
stationary processes [2, 31].

2. Smoothness in maturity: yield curves do not present highly irregular profiles
with respect to maturity. Of course one could argue that with 50 or 60 data
points it is difficult to assess the smoothness of a curve; this property should
be viewed more as a requirement of market operators. A “jagged” yield curve
would be considered as a peculiarity by any market operator. This is reflected
in the practice of obtaining implied yield curves by smoothing data points using
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splines. Note however that these interpolation/smoothing procedures are usually
applied to the discount curve, i.e., to the function:

D(t, x) = exp−
∫ x

0

rt(u) du, (1.1)

of which the forward rate curve is a logarithmic derivative, so the implied degree
of smoothness for the forward curve itself is lower.

3. Irregularity in time: The time evolution of individual forward rates (with a fixed
time to maturity) are very irregular. This should be contrasted with the regular-
ity of forward rates with respect to time-to-maturity and reveals an asymmetry
between the respective roles of the variables t and x.

4. Principal components: Principal component analysis of term structure deforma-
tions indicates that at least two factors of uncertainty are needed to model term
structure deformations. In particular, forward rates of different maturities are
imperfectly correlated. Empirical studies [5, 20] uncover the influence of a level
factor which corresponds to parallel shifts of the yield curve, a steepness fac-
tor which corresponds to opposite changes in short and long term rates and a
curvature factor which means that the curvature of the yield curve influences its
evolution. More precisely, the third principal component, when projected on for-
ward rates of different maturities, shows large coefficients maturities around one
year and small coefficients on the two extremities of the yield curve [5]. Higher
principal components show increasingly oscillating profiles in maturity and the
variances associated to these principal components decay quickly [5, 20, 27]. The
shapes of these principal components are stable across time periods and markets.

5. Humped term structure of volatility: Forward rates of different maturities are
not equally variable. Their variability, as measured for example by the standard
deviation of their daily variations, has a humped shape as a function of the
maturity, with a maximum at x � 1 year and decreases with maturity beyond one
year [5]. This hump is always observed to be skewed towards smaller maturities.
Moreover, though the observation of a single hump is quite common [21], multiple
humps are never observed in the volatility term structure.

1.3. Model dimensionality and its implications

Another issue is the dimensionality of the model: the number of variables and
the number of (independent) factors, which turns out to be more important for
model properties than distributional assumption on interest rates [30]. Empirical
term structure data consist of time series of interest rates of various maturities; for
example, in the Eurodollar market interest rates of about 40 different maturities
can be obtained on a daily basis. Instead of modeling the data as a time series
of 40-component vectors, continuous-time interest rate models tend to represent
the yield curve as a function of a continuous maturity variable T evolving with a
continuous time parameter t. These models, all of which can be embedded in the
HJM [4, 17] framework with the forward rate curve as the dynamical variable, take



May 3, 2005 14:10 WSPC-104-IJTAF SPI-J071 00304

Modeling Term Structure Dynamics 361

the initial term structure and the forward rate volatilities as inputs and model the
evolution of forward rates f(t, T ) as an infinite family of scalar diffusions driven by
a finite number of independent Wiener processes:

df(t, T ) = α(t, T ) dt +
d∑

i=1

σi(t, T ) · dW i
t . (1.2)

This choice may appear surprising since it greatly reduces the number of degrees
of freedom in the dynamics of the term structure. Given the disproportion between
the number of independent noise sources and the number of variables, it also implies
that if no constraint is imposed on the dynamics such a model will present obvious
arbitrage opportunities: as shown by Heath, Jarrow & Morton [17], requiring the
absence of arbitrage strategies involving bonds of all maturities imposes a strong
restriction on the drift coefficient of the forward rates:

α(t, T ) =
d∑

i=1

σ(t, T )
∫ T

t

σ(t, u) du +
d∑

i=1

σi(t, T )γi(t), (1.3)

where γi(t) are predictable processes representing the difference between the risk-
neutral and the actual dynamics. But it is not clear whether the constraint (1.3)
has any econometric reality: when estimating models such as (1.2)–(1.3) empirically,
standard practice is to add an independent “observational error” to each observed
forward rate [23], these extra sources of randomness not being restriced by (1.3).
The need for unconstrained error terms amounts to recognizing that (1.3) is not
satisfied in the observations and that the effective number of sources of randomness
is equal to the number of forward rates observed.

While this may be true, it is also true as noted above that the first three principal
components of forward rate movements explain more than 95% of their variance,
suggesting that a three factor model would be sufficient. Low dimensional factor
models [11, 13] are usually justified by referring to such results. But this line of
reasoning has a flaw: the covariance structure of the forward rates is not to be
identified with the covariance structure of the driving factors. In fact, as we shall
see in Sec. 3, an arbitrary number of independent factors can coexist with a small
number of dominant principal components.

Also, while a low dimensional factor model might explain the variance of the for-
ward rate itself, the same model may not be able to explain correctly the variance of
the P&L of fixed income portfolios involving non-linear combinations of the same
forward rates. In other words, a factor whose associated eigenvalue is small may
have a non-negligible effect on the fluctuations of a fixed-income portfolio whose
value may have a large sensitivity to this factor. This question is especially relevant
when calculating quantiles and Value-at-Risk measures and pleads for including all
factors present instead of retaining only the few dominant ones.

Finally, n-factor diffusion models also imply that a interest-rate contingent claim
may be hedged with any set of n+1 (zero-coupon) bonds, the maturities of the hedg-
ing instruments not being linked to that of the position being hedged. By contrast,
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market practice is to hedge a interest-rate contingent payoff with bonds of the same
maturity (unless, of course, liquidity considerations impose the trader to do oth-
erwise). These practices reflect the existence of a risk specific to instruments of a
given maturity; in economic terms this phenomenon is related to the relative seg-
mentation in maturity of the fixed income market. This fact does not seem to have
any theoretical counterpart in HJM models, where randomness in the movements
of interest rates is not local in maturity but “distributed” over all maturities. The
presence of a maturity-specific risk can be restored if, when taking the continuum
limit, one also allows the number of sources of randomness to grow with the number
of maturities, leading to a possibly infinite number of factors in the limit. This idea
has a natural link to random field representations of term structure models [15, 19].

2. A Stochastic Evolution Equation for Term Structure
Deformations

What are the lessons to be drawn from these empirical observations? We will first
define some criteria which a model should try to respect in order to give a faithful
statistical representation of interest rate fluctuations. Based on these considerations,
we will then proceed to describe the deformations of the term structure by means of
a stochastic evolution equation, translating each of the criteria outlined above into
their mathematical equivalents.

2.1. Parametrization of the forward rate curve

We will parameterize the evolution of the term structure of interest rates by the
instantaneous forward rate curve (FRC), denoted by ft(x) where the subscript t

denotes time and x ∈ [xmin, xmax]:

f(t, T ) = rt(x), x = T − t. (2.1)

As remarked by Musiela [22], this parametrization has the advantage that the for-
ward rate curve process rt will belong to the same function space (a space of con-
tinuous curves defined on [xmin, xmax]) when t varies, which is not the case of the
process f(t, .) whose domain of definition [t, t + xmax] changes with time. This
change of parametrization is therefore more than a mere convenience because it
allows to choose a single state space for the forward curve process and represent
the forward rate curve as a stochastic process in an appropriately chosen infinite-
dimensional function space. Here xmin is the shortest maturity available on the
market and xmax the longest. rt(xmin) will be called the short rate, rt(xmax) the
long rate. The quantity s(t) = rt(xmax) − rt(xmin) is the spread.

In most interest rate models xmin is taken to be 0 and xmax = +∞ but this is not
necessarily the best choice nor even realistic. First, it is obvious that in empirical
applications maturities have a finite span and xmax will be typically 30 years or less
depending on the applications considered. Second, the finiteness of xmax avoids some
embarrassing mathematical problems related to the x → ∞ limit [12, 13] which are
not necessarily meaningful from an economic point of view. More importantly, we
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shall see that the xmax = +∞ limit is not “innocent”: setting xmax to a large but
finite value can be qualitatively different from taking it to be infinite.

2.2. Decomposition of forward rate movements

As mentioned above, given the exogenous, macroeconomic nature of the fluctua-
tions in the short rate and the well known role of the short rate and the spread
as two principal factors, we first proceed to “factor” them out of the model and
parameterize the term structure as follows:

rt(x) = rt(xmin) + s(t)[Y (x) + Xt(x)], (2.2)

where Y is a deterministic shape function defining the average profile of the term
structure and Xt(x) a nonanticipative process describing the random deviations of
the term structure from its long term average shape. With no loss of generality we
require:

Y (xmin) = 0, Y (xmax) = 1, (2.3)
which results in

Xt(xmin) = 0, Xt(xmax) = 0. (2.4)

The process Xt(x) then describes the fluctuations of a random curve with fixed end-
points. We will thus call Xt the deformation of the term structure at time t. Factor-
ing out the fluctuations of the first two principal components then means modeling
separately the process (rt(xmin), s(t)) and the deformation process (Xt)t≥0.

Figure 1 shows the various configurations adopted by the deformation process
Xt(x) in the case of Eurodollar futures.

In a Gaussian framework, the uncorrelated nature of the principal component
processes would entail their independence. In particular the first two principal com-
ponents (which are roughly the spread and the short rate) would be independent
from the deformation process Xt. However this assumption is not necessary in what
follows and one can for example insert a state-dependent volatility or jump compo-
nent in the short rate/spread process without altering the conclusions that follow.

2.3. The short rate and the spread

Among all interest rates, the short rate rt(xmin) is highly sensitive to the monetary
policy of the central bank and cannot be considered as a market rate: its dynamics is
exogenous to the fixed income market. One could therefore model its dynamics as an
autonomous diffusion. However, as shown by Ait Sahalia [2], non-parametric tests
tend to reject the diffusion hypothesis for rt(xmin) taken individually whereas the
hypothesis of a bivariate diffusion for (rt(xmin), s(t)) is not rejected. Motivated by
these remarks, we assume that the short rate and the long rate (rt(xmin), rt(xmax))
are described by a (bivariate) Markov process.

drt(xmin) = µ1(rt(xmin), st) dt + σ1,1(rt(xmin), st) dZ1
t + σ1,2(rt(xmin), st) dZ2

t ,

dst = µ2(rt(xmin), st) dt + σ2,1(rt(xmin), st) dZ1
t + σ2,2(rt(xmin), st) dZ2

t ,

(2.5)
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where Z1, Z2 are two independent noise sources, which can be Wiener processes or
more generally, may have discontinuous trajectories as observed in many empirical
studies of short term interest rates. For example, the noise source in Eq. (2.5) could
be replaced with a non-Gaussian Lévy process without modifying what follows.
Examples of diffusion models of this type have been previously considered in the
literature, see [7, 29].

2.4. Term structure deformations as infinite-dimensional

diffusions

We are now left with the deformation process (Xt)t≥0 to model. The first require-
ment we impose on Xt is its smoothness in maturity: at a given time t, Xt is a
function defined on [xmin, xmax] determined by the forward term structure which,
as remarked above, is a “smooth” function of the time to maturity x. Xt should
therefore belong to a suitable space H of smooth functions. In view of interpret-
ing our results in terms of principal component analysis, we would like the state
space H to have a Hilbert structure in order to define orthogonal projections of Xt

onto a suitable basis of H .
The second requirement we impose is that Xt be a Markov process in H . This

property, as remarked in [22], is already verified in the Heath-Jarrow-Morton [17]
framework for the forward curve process ft. Together with the hypothesis of conti-
nuity in time of the deformation process, this leads us to a diffusion model taking
values in H . More precisely, stating that Xt is a H-valued diffusion process means
that there exist a drift operator µ: H → H and a volatility operator σ: H → L2(H),
defined on H , such that the evolution of Xt is given by a stochastic differential equa-
tion in H :

dXt = µ(t, Xt) dt + σ(t, Xt) dBt, (2.6)

where Bt is a Brownian motion taking values in H . Here µ and σ may be allowed
to depend on the contemporaneous term structure — they can be a function of the
whole curve Xt(x), x ∈ [xmin, xmax].

Formally, Eq. (2.6) is a stochastic differential equation in an (infinite-
dimensional) function space H . In order to give a proper meaning to Eq. (2.6), one
should start by specifying the nature of the random noise source Bt such that the
stochastic integral implicit in Eq. (2.6) can be properly defined. There are several
ways to define a generalization of the Wiener process and a stochastic integral in an
infinite dimensional space. The relation between these different constructions was
clarified by [33] who showed that the natural setting for constructing infinite dimen-
sional diffusions is a Hilbert space. Here we give a brief survey of the mathematical
setting in order to make it accessible to readers familiar with stochastic differential
equations in the finite dimensional setting. Given a (separable) Hilbert space H ,
such as H = L2([xmin, xmax], ν) for some measure ν or an associated Sobolev space
of smooth functions, and a complete orthonormal family (en)n≥1 of H , the elements
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of H may be characterized by their decomposition on the basis (en)n≥1:

∀h ∈ H, ∃!(hn)n≥1,
∑
n≥1

h2
n < +∞,

∣∣∣∣h −
N∑

n≥1

hnen

∣∣∣∣
H

−→
N→∞

0. (2.7)

One would then like to define a “standard” Brownian motion in H as being a
superposition of independent scalar Wiener processes along each direction of the
basis:

Bt =
∑
n≥1

Wn(t)en. (2.8)

However, this sum does not converge in H since the coefficients in the expansion
are not square summable: Bt cannot therefore be defined as a process taking values
in H . However, for any unit vector h ∈ H the “projection” of Bt on h defines a
square integrable random variable:

Bt(h) := 〈Bt, h〉 =
∑
n≥1

Wn(t)hn ∈ L2(Ω, H). (2.9)

〈Bt, h〉 is in fact a scalar Brownian motion for each h and can be interpreted as
the component of Bt along h. This property may be used to define Bt through its
projections: one can define a cylindrical Brownian motion on H as a family (Bt)t≥0

of random linear functionals Bt: H → R satisfying:

1. ∀h ∈ H,B0(h) = 0.

2. ∀h ∈ H,Bt(φ) is an Ft — adapted scalar stochastic process.
3. ∀h ∈ H − {0}, Bt(φ)

|φ| is a one-dimensional Brownian motion.

In particular, if one takes any orthonormal basis (en) in H then its image
(Wn(t))t≥0 = (Bt(en))t≥0 forms a sequence of independent standard Wiener pro-
cesses in R, which justifies the formal expansion (2.8). This property is indepen-
dent of the choice of the orthonormal family (en). It is useful for building finite-
dimensional approximations and is analogous to the construction of n-dimensional
Brownian motion as a vector of n independent scalar Wiener processes.

Although the expansion (2.8) does not converge in H , it can be made to converge
by weighting the terms with coefficients which decay with n:

WQ
t =

∑
n≥1

Wn(t)qnen ∈ H, qn ≥ 0
∑
n≥1

q2
n < ∞. (2.10)

The projections of WQ on the basis (en) still forms a sequence of independent
Wiener processes, but the variances q2

n now decay with n. This construction is not
invariant with respect to the choice of the basis (en)n≥1: a “change of basis” will
introduce correlations in the coordinates, with the covariances given by

cov(〈WQ
t , h1〉, 〈WQ

t , h2〉) = 〈Q · h1, h2〉, (2.11)
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where Q is the symmetric positive operator defined by Q · en = qnen. WQ is called
a Q-Wiener process [9, 33]: it can be seen as a random field whose increments are
uncorrelated in time but correlated in the x-direction.

The construction above can be carried out in any (separable) Hilbert space
of functions: examples are weighted Sobolev spaces of real-valued functions on
[xmin, xmax], i.e., the space of functions g ∈ L2([xmin, xmax], ν) such that the deriva-
tive g(s) of order s is also in L2([xmin, xmax], ν). The Sobolev embedding theorem [1]
then implies that if s > k + 1/2 then forward rate curves are k-times differentiable
in the usual sense. Many recent papers have discussed other choices of state spaces
for forward rate curves (see, e.g., [14]): a typical requirement in these discussions is
that the forward rate is a continuous function of (time-to-)maturity so that point
evaluation x 
→ rt(x) is a continuous operation. Note however that the instantaneous
forward rates rt(x) are not observable quantities: the only observable quantities are
zero-coupon bond prices or LIBOR rates. These quantities are integral functionals
of the forward rate curve, thus already continuous with respect to a weighted L2

norm. In the following we shall take as our state space H = L2([xmin, xmax], ν)
and then give conditions under which the forward rate curve in our model actually
belongs to Sobolev spaces Hs([xmin, xmax], ν) with a given smoothness s ≥ 1. Due
to the normalization used for the deformation process Xt, it actually verifies the
boundary conditions (2.4) so we will see that Xt ∈ Hs

0([xmin, xmax], ν).
At this level of generality, not much can be said of the properties of the solutions

of Eq. (2.6). In this section we will show how the description of term structure defor-
mations through level, steepness and curvature of the yield curve reduces Eq. (2.6)
to a stochastic partial differential equation, of which we study the simplest example.

2.5. Market segmentation and local deformations

As mentioned before, the maturity x is not simply a way to index different forward
rates and instruments: the fact that fixed income instruments are ordered by matu-
rity is important for market operators. For example, this is reflected in the hedging
strategies of operators on the fixed income market: to hedge an interest rate risk of
maturity x = 8 months, an operator will tend to use bonds (or other fixed-income
instruments) of maturity close to 8 months: 6 months, 9 months. Although this
strategy seems quite sensible, it does not correspond to the picture given by multi-
factor models: in a k-factor model, any k + 1 instruments can be used to hedge an
interest rate contingent claim. For example in a two factor model one could use in
principle a 30 year bond, a 10 year bond and a 6 year bond to hedge an instrument
with maturity of two years! Needless to say, no sensible trader would follow such a
strategy, which shows that in practice the factors which explain 95% of the variance
are not enough to hedge 95% of the risk of an instrument with a non-linear payoff:
this is precisely our principal motivations for introducing maturity-specific sources
of randomness.

The existence of maturity-specific risk naturally leads to a market for such risk.
Indeed, some macroeconomic theories of interest rates have considered the interest
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Fig. 1. Various configurations adopted by the function Xt(x) defined in Eq. (2.2) as obtained
from Eurodollar future contracts (1992–1997). This figure may be seen as a visualization of the
stationary density of the process Xt.

rate market as being segmented: for example in a first approximation one can con-
sider the market for US Treasury bills, Treasury notes and Treasury bonds as being
3 separate markets where prices are fixed independently. In a continuous-maturity
model this would mean that the interest rate market is partitioned into indepen-
dently evolving markets involving instruments with maturity between x and x+dx.
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However this is not strictly true: as shown by principal component analysis, long-
term rates do react to variations in the short rate in a way that is not explainable
simply via parallel shifts and vertical dilations of the term structure. One way to
conciliate the interdependence of rates of various maturities with the segmentation
of markets across maturities is by considering deformations of the term structure
that are local in maturity: a forward rate of maturity x is more sensitive to variations
of rates with maturity close to x. We are not dealing here with a strict segmentation
of the market into separately evolving markets but a “soft” segmentation which
simply implies that the market for each maturity adjusts itself to the variation in
rates of maturities immediately above and below it. This means for example that,
among all rates of maturity ≥1 year, the 1 year rate will have a higher sensitivity
and react more quickly to a variation in the short rate since it is closer in maturity.

2.6. Level, steepness and curvature

In mathematical terms, the local deformation hypothesis means that the variation
of Xt(x) will only depend on the behavior of Xt(·) around x. One can parameterize
the shape of the term structure around a given maturity x by its first few derivatives:
Xt(x), ∂xXt, ∂2

xXt, . . . As noted before, empirical studies seem to identify the level of
interest rates, the steepness (slope) of the term structure and its curvature as three
significant parameters in the geometry of the yield curve [20]. In a market involving
instruments of maturity between x and x + dx, these three features are described
by the level of rates, and the first two derivatives with respect to x. Combining
the local deformation hypothesis formulated in Sec. 5.1. with a local description of
the term structure by level, steepness and curvature one obtains that the drift and
volatility of Xt(x) can only depend on Xt(x), ∂xXt, ∂2

xXt. Econometric evidence
for the influence of the local slope and level on the movements of forward rates has
been observed by [25] among others. Equation (2.6) then becomes a second order
stochastic partial differential equation:

dXt =
[
∂Xt

∂x
+ b

(
Xt(x),

∂Xt

∂x
,
∂2Xt

∂x2

)]
dt + σ

(
Xt(x),

∂Xt

∂x
,
∂2Xt

∂x2

)
dBt(x),

∀ t ≥ 0, Xt(xmax) = Xt(xmin) = 0, Xt=0(x) = X0(x). (2.12)

This equation is the mathematical expression of the fact that deformations are local
in maturity and that the deformation at maturity x depends on the level, steepness
and curvature of the term structure around x.

As noted by [16, 22], HJM models also give rise to (first-order) stochastic PDEs
for risk-neutral dynamics of the term structure. The new aspect in our approach
is the inclusion of a second order term which captures the effect of curvature and
changes the nature of the equation. In the general case where b and σ are nonlinear
functions of their arguments, Equation (2.12) is not easy to study: indeed, it is not
trivial to define properly what is meant by a solution of Eq. (2.12) and even less to
study their regularity [9, 24]. In order to point out the differences with HJM-type
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models resulting from the local deformation hypothesis, we shall consider the case
of a forward rate dynamics such as (1.2) which is perturbated by a term depending
on the curvature:

dXt =
[
∂X

∂x
+ b(t, x, Xt(x)) +

κ

2
∂2X

∂x2

]
dt + σ(t, x, Xt(x)) dBt(x),

∀ t ≥ 0, Xt(xmin) = Xt(xmax) = 0, Xt=0(x) = X0(x). (2.13)

Mathematical properties of stochastic PDEs such as Eq. (2.13) have been widely
studied in the mathematical literature: see [9, 18, 24, 32]. The approach adopted
here is that of [9]. In the following section we study the simplest case where volatility
is constant; surprisingly, we will show that this simple case already presents many
of the desirable features enumerated in Sec. 1.

3. The Linear Parabolic Case

In order to illustrate what are the type of dynamics implied by Eq. (2.13) for
term structure deformations, we will now study the simplest example of the above
equations which incorporates the influence of local steepness and curvature, namely
the case where σ is independent of Xt. For the sake of simplicity we will deal here
with the constant volatility case but all the results below remain valid in the case of
an arbitrary deterministic function of time t. The case of constant volatility leads
us to the following stochastic partial differential equation:

∂X

∂t
=

[
∂X

∂x
+

κ

2
∂2X

∂x2

]
dt + σ0 dBt(x), (3.1)

∀ t ≥ 0, Xt(xmin) = Xt(xmax) = 0, (3.2)

∀x ∈ [xmin, xmax], Xt=0(x) = X0(x). (3.3)

3.1. Eigenmodes and principal components

Let x∗ = xmax − xmin be the maturity span of the observed forward rate curve. By
translating the maturity variable one can assume xmin = 0 without loss of generality
in what follows. We consider as state space for our solutions the Hilbert space H of
real-valued functions defined on [0, x∗] with the scalar product:

〈f, g〉H =
∫ x∗

0

dx exp
(

2x

κ

)
f(x) g(x). (3.4)

The subscript H in 〈., .〉H will be omitted in most of this section. Let A be the
operator in H defined by:

A · u =
∂u

∂x
+

κ

2
∂2u

∂x2
. (3.5)

It is not difficult to show that A has a discrete spectrum, with eigenvalues and
eigenfunctions given by:

A · en = −λnen, (3.6)
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λn =
1
2κ

(
1 +

n2π2κ2

x∗2

)
, (3.7)

en(x) =

√
2
x∗ sin

(nxπ

x∗
)

exp
(
−x

κ

)
, (3.8)

where n takes all integer values ≥ 1. Here the eigenfunctions en have been normal-
ized such that (en)n≥1 is an orthonormal basis of H .

〈en, em〉 = δnm. (3.9)

The functions (eigenmodes) en(x) play the role of the principal components for the
deformation process Xt. That is, if we perform a principal component analysis on
a realization of the process Xt, for a large enough sample the empirical principal
components would reproduce the eigenmodes en(x). The first two of these eigen-
modes are shown in Fig. 2. The role of the exponential term in Eq. (3.8) is clearly
visible: the eigenfunctions become “skewed” towards shorter maturities and only
a single hump, whose position is determined by the value of κ, is visible. Recall
that this exponential term stems simply from the fact that we are parameterizing
the forward rate process by time to maturity x instead of maturity date T [22].
In particular, in contrast with multifactor models [21], there is no need to use a
complicated volatility structure σ(t, x) to obtain a volatility hump. The position of
the hump gives a (first) simple method for estimating the value of κ from empirical
observations. Remark also that the exponential factor prevents more than one hump
from appearing in the eigenfunctions: as a result, multi-humped deformations are
not observed, in concordance with the empirical observations invoked in Sec. 2.

Fig. 2. First two eigenmodes of the operator A, with κ = 4 and x∗ = 30 years. Note the maxima
situated at short maturities.
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The Green function (propagator) associated to the operator A may then be
expressed in terms of an eigenmode expansion:

G(t, x, y) =
∑
n≥1

exp(−λnt)en(x)en(y). (3.10)

The random field Xt(x) is then said to be a mild solution [9] of Eq. (3.1) if it verifies
the equation in the following integral form:

Xt(x) =
∫ x∗

0

G(t, x, y)X0(y) dy +
∫ t

0

ds

∫ x∗

0

G(t − s, x, y)σ0dBs(y). (3.11)

Let Xt(x) be the solution of Eq. (3.11). Define the coordinates of the solution in
the eigenvector basis as:

xn(t) = 〈Xt, en〉 =
∫ x∗

0

dxXt(x)en(x) exp
(

2x

κ

)
. (3.12)

The coefficients xn(t) therefore represents the projection of the deformation process
Xt on the nth principal component (eigenmode). For each n, xn(t) is then a solution
of a linear stochastic differential equation:

dxn(t) = −λnxn(t) dt + σ0 dWn
t , (3.13)

where Wn
t = Bt(en) are independent standard Wiener processes. (xn(t))n≥1 there-

fore constitute a sequence of independent Ornstein–Uhlenbeck processes. The
Ornstein–Uhlenbeck process is the process used to represent the short rate in the
Vasicek model [31]: it possesses the fundamental property of mean reversion which
has made it a popular model in interest-rate modeling. In our case, this mean
reversion is observed in the principal components of the yield curve: while individ-
ual forward rates may have a non-stationary and irregular behavior the yield curve
as a whole will converge to a stationary state with a mean-reverting behavior. We
can thus represent the random field Xt(x) as an infinite factor model where each
factor follows an Ornstein–Uhlenbeck process:

Xt(x) =
∑
n≥1

xn(t)en(x), (3.14)

xn(t) = e−λnt〈en, X0〉 +
∫ t

0

ds e−λn(t−s)σ0dWn
s . (3.15)

Equation (3.17) has an interesting interpretation. Remember that xn(t) the projec-
tion of the deformation process Xt on the nth principal component. Equation (3.15)
expresses xn(t) as the sum of two components, the first one being the contribu-
tion of the initial term structure to xn and the second one its stationary value.
Equation (3.15) may then be interpreted by stating that the forward rate curve
“forgets” the contribution of the nth principal component to the initial term struc-
ture at an exponential rate with characteristic time

τn =
1
λn

=
2κ

1 + n2π2κ2

x∗2

. (3.16)

Therefore, a perturbation of the initial term structure due to the nth principal
component will disappear or be smoothed out after a typical time τn which decreases
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with n: perturbations which have an irregular profile in maturity die out more
quickly than smoother ones. This property guarantees that in the long term only
smooth deformations of the term structure remain visible, which guarantees the
smoothness in maturity and shows the important relation between the smoothing
property of the operator A and the decay of its eigenvalues: an operator with a
quickly decaying spectrum will guarantee a fast decay (in time) of the singularities
appearing in the term structure and restore smoothness in maturity. This gives a
second interpretation of the parameter κ: in addition to determining the position of
the volatility hump, it also determines the decay rate of perturbations of the term
structure. This interpretation gives a second, independent method for estimating
the model parameters from empirical data. One can also construct more general
models where these two roles of κ can be attributed to two separate parameters by
introducing a term structure κ(x) [8].

The factor representation (3.14) can be easily generalized to the case where
factors have unequal volatilities (σn, n ≥ 1):

xn(t) = e−λnt〈en, X0〉 +
∫ t

0

ds e−λn(t−s)σn dWn
s . (3.17)

Xt is then the (mild) solution of

dXt = A · Xt dt + σ · dBt, (3.18)

where σ is now an operator verifying

σ · en = σ2
nen, σ · A = A · σ. (3.19)

Given the explicit form of λn, it is easily verified that the series

E[Xt(x)] =
∑
n≥1

e−λnt〈X0, en〉en(x), (3.20)

Var[Xt(x)] =
∑
n≥1

σ2
n

1 − exp(−2λnt)
2λn

en(x)2, (3.21)

are absolutely convergent for all (t, x) and (3.14) defines a Gaussian random field
with mean and variance given by (3.20)–(3.21).

3.2. Average term structure and mean reversion

Under the above assumptions, one can calculate the average shape of the term
structure of forward rates from Eq. (2.2).

E[rt(x)] = E[rt(xmin)] + E[s(t)]Y (x). (3.22)

The shape function Y (x) can therefore be chosen in order to reproduce the average
term structure. Bouchaud et al. [5] propose the following shape function:

Y (x) =
√

x

x∗ , (3.23)
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which appears to give a good fit of the average shape of the Eurodollar term struc-
ture for maturities ranging from 3 months to 10 years [5]. However, the precise
analytic form of the shape function Y does not affect the results above.

How does the yield curve fluctuate around its average shape? It is easily seen
from Eq. (3.21) that the process Xt converges for t → ∞ to a Gaussian random
field X∞ with mean zero and covariance:

Cov(Xt(x), Xt′ (x′)) =
∑
n≥1

σ2
n

en(x)en(x′)e−λn(t−t′)

2λn
. (3.24)

Viewed as a process in H , (Xt) is an Ornstein Uhlenbeck process whose stationary
distribution is a Gaussian distribution with covariance

C =
1
2
σ · σ∗A−1, with spectral decomposition C · en =

σ2
n

2λn
en, n ≥ 1. (3.25)

An important consequence of Eq. (3.25) is that the variance of the principal com-
ponents can be small without the factor volatilities being small: a fast increase of
λn has the effect of damping out the variance of the higher principal components.
In terms of term structure movements, stationarity of term structure deformations
implies a mean-reverting behavior of forward rates. The analytic form of the sta-
tionary measure further allows to compute the probability of a given yield curve
deformation by decomposing it on the principal component basis.

3.3. Smoothness in maturity

As mentioned above, an important property of forward curves is their smoothness
in maturity x, as opposed to their irregular behavior in t. In the parabolic SPDE
model, this property is guaranteed by the smoothing effect of the second order
derivative in x. Moreover, one can precisely relate the rate of decay of volatilities
σn of the factors to the smoothness of the forward rate curve:

Proposition 3.1. If the volatilities σn decay faster than n−β i.e., (nβσn)n≥1 is
bounded then, with probability 1, the stationary solution of (3.18)–(3.19) is k times
differentiable with respect to the maturity variable x for every k < β.

Proof. Let P∞ be the stationary distribution of Xt on L2([xmin, xmax], ν). P∞
is a Gaussian measure with covariance C where C = A−1 · σ∗σ/2. So C · en =
σ2

n/2λn. Now assume σn = ann−β with (an) bounded and take k < β. Then,
EP∞ |〈Xt, en〉|2 = σ2

n/2λn. Now take any real number s > k + 1/2. The Sobolev
space Hs([xmin, xmax]) is defined by

h ∈ Hs ⇔ h ∈ L2([xmin, xmax], ν), |h|2Hs =
∑
n≥1

n2s|〈h, en〉|2 < +∞.

Substituting h = Xt and taking expectations one obtains

EP∞‖Xt‖2
Hs =

∑
n≥1

n2sσ2

2λn
=

∑
n≥1

ann2s−2β

2λn
.
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Since λn increases as n2, the summands are bounded by a sequence decaying as
n2s−2−2β . So 2s − 2 − 2β < −1 and the series is absolutely convergent:

EP∞‖Xt‖2
Hs < +∞.

Therefore P∞(‖Xt‖2
Hs < +∞) = 1 so ∀ s > k+ 1

2 , P∞(Xt ∈ Hs) = 1. By the Sobolev
embedding theorem [1], every element of Hs, s > k + 1/2 is k times differentiable
with respect to x hence the result.

This result means that one can then read off the degree of smoothness of the for-
ward rate curve from the decay rate of factor volatilities, in a very simple way.
In particular, if the number of driving factors is finite, the forward rate curve is
infinitely differentiable in x.

It also implies that we can read off the degree of differentiability with respect to
maturity from the rate of decay of variances in the principal component analysis: if
the variances decay as n−β, then the maximal degree of differentiability of forward
rate curves is less than β. Empirical studies [5] indicate a rate of decay between
β = 2 and β = 3. However β is the asymptotic rate of logarithmic decay and as
such may be difficult to determine precisely from empirical data since by definition
one has observations on a discrete tenor of maturities. This point is also discussed
by [10].

Note finally that, even in the case of flat term structure where σ = σ0I, in which
case the noise term is space-time white noise, the dependence in maturity x is still
twice as smooth as in t: the asymmetry between t and x dependence is not due to
an ad-hoc choice of volatility structure [21] or of the noise source (as [28], see below)
but is a generic property due to the presence in (3.1) of the second derivative with
respect to maturity.

3.4. Random strings: parabolic vs. hyperbolic formulation

In a recent work [28], it has been proposed to consider stochastic partial differential
equations of hyperbolic type to describe the evolution of the forward rate curve.
Such an equation differs from the above one through the presence of a second-order
time derivative which dominates the dynamics. The hyperbolic model proposed by
[28] is formulated in terms of the forward rate process itself (in the spirit of the
HJM model [17]) and not in terms of the deformation process Xt, by examining the
effect of a second-order time derivative in the equations of Sec. 5. Let us therefore
consider the general case where the evolution equation contains both a propagation
term and a diffusion term:

f
∂2X

∂t2
+

∂X

∂t
=

∂X

∂x
+

κ

2
∂2X

∂x2
+ σ · dBt(x), (3.26)

∀ t ≥ 0, Xt(0) = Xt(x∗) = 0, (3.27)

Xt=0(x) = X0(x),
∂Xt=0

∂t
= Y0. (3.28)
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The above equation is analogous to that of a vibrating elastic string, hence the name
of “string models” given to such descriptions of term structure movements. The case
f = 0 is the one studied in Sec. 5; the case f → ∞ (the other parameters being
appropriately rescaled) is the stochastic wave equation [9], the “space” variable
being x+ t. Note that the stochastic PDE proposed by [28] is formulated as a PDE
perturbated by a two-parameter (“space-time”) noise (called a “stochastic string
shock”) while our Eq. (3.1) or the general case Eq. (2.12) was presented above as
an evolution equation for a curve in some function space. In the case of a parabolic
SPDE, where only the first derivative with respect to time is involved, the two
approaches are equivalent for a two-parameter process. Choosing one approach or
the other then amounts to viewing the solution of a stochastic PDE either as a
random field or as a stochastic process in a function space. Implicit in this choice
is whether the object of interest for modeling purposes is an individual interest
rate or the deformation of a multivariate object, namely the term structure. The
parabolic equation in Sec. 3 has the merit of emphasizing the asymmetric roles of
the variables x and t, an empirically desirable feature which is not present, as we
shall see below, in the hyperbolic case.

Manifestly, the operator on the right hand side of Eq. (3.26) is the same as in
Eq. (3.1). This means that the deformation eigenmodes (the eigenfunctions of A)
will remain the same as in Eq. (3.1) studied above but the projection of the process
Xt on each of them will be different. For example, a stationary solution of Eq. (3.26)
will not give the same weight to the eigenmodes as in the parabolic case studied
in Sec. 5 and therefore the results of a Principal Component Analysis of Eq. (3.26)
will differ from that of Eq. (3.1) in terms of the eigenvalues.

The representation of the equation in terms of its projections on the eigenmode
basis en gives as above a stochastic equation for the scalar process yn(t) = 〈Xt, en〉:

f
d2yn

dt2
+

dyn

dt
= −λnyn(t) + σ0Ẇ

n
t . (3.29)

This formal second-order stochastic differential equation is interpreted in the usual
way, as follows. Consider the Green function Un(t) of the operator f ∂2u

∂t2 + ∂u
∂t +λnu,

given by:

Un(t) =
1

f
√

1 − 4λnf
[er1,nt − er2,nt]1t>0, (3.30)

where r1,n and r2,n being the roots of the associated characteristic equation:

fr2 + r + λn = 0. (3.31)

The process xn(t) is then given by the stochastic convolution integral:

yn(t) = ane−r1,nt + bne−r2,nt +
∫

Un(t − s) dWn
s , (3.32)

which is well-defined since the integrator is square-integrable in s. Here an and
bn are defined by the initial conditions. Depending on the values of f and κ, two
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scenarios are possible:

1. Oscillatory behavior: if

f >
κ

2
(
1 + π2κ2

x∗2

) , (3.33)

then for all n ≥ 1, Eq. (3.31) has two complex conjugate roots given by:

r1,n =
i
√

4λnf − 1 − 1
2f

= − 1
2f

+ iωn, (3.34)

r2,n =
−i

√
4λnf − 1 − 1

2f
= − 1

2f
− iωn. (3.35)

The real part gives an exponential damping of the initial conditions which char-
acterizes the mean reverting behavior of Xt as in the parabolic case. First remark
that, unlike the parabolic case where “bumpy” principal components which con-
tribute the most to non-smoothness in maturity decay more quickly, here all
principal components decay with the same speed, i.e., a mean reversion time of
2f . Recall that κ still determines the position of the volatility hump so κ � 1
year. So (3.33) implies that f > 6 months. The mean reversion time of the whole
curve is thus around a year. However, a new phenomenon appears: the principal
components do not simply revert to their mean but oscillate around their mean
with a frequency ωn/2π which increases with n:

xn(t) = Ane−t/2f cos(ωnt + φn). (3.36)

The phase φn and amplitude factor An are determined by (two) initial conditions
(see below). The oscillation of the term structure around its mean is not neces-
sarily an undesirable feature of this model and indeed can be justified on eco-
nomic grounds [8]. But the slow mean reversion combined with increasingly faster
oscillations of the higher order principal components leads to non-smoothness in
maturity of the solutions of Eq. (3.26) [9]: in fact one should expect the cross-
sections in time or maturity to have the same irregularity which, as pointed out
in Sec. 1, is not a desirable feature for a term structure model.

2. Selective damping of principal components: if

f <
κ

2
(
1 + π2κ2

x∗2

) , (3.37)

then ∃N > 1 such that for n ≤ N , Eq. (3.31) has two real, negative roots
whereas for n > N the roots are complex conjugates with negative real parts.
The projections of the deformations process Xt on the first N eigenmodes will
have a mean reverting behavior as in the parabolic case,1 with a mean reversion
time increasing with n. For n > N , xn(t) will have a damped oscillatory behavior,

1In fact the decay of the initial condition is described in this case by the superposition of two
decreasing exponentials with time constants given by r−1

1n and r−1
2n .
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with a damping time τ = 2f independent of n and an oscillation frequency
increasing with n as above.

Another crucial difference between Eq. (3.26) and Eq. (3.1) is the nature of the
initial conditions. In the case of the parabolic equation (3.1) the problem has a
well defined solution once the initial term structure is specified through X0. This
is not sufficient in the case of Eq. (3.26): one must also specify the derivative with
respect to time at t = 0. In the case of a vibrating string, this means specifying the
initial position and the initial velocity of each point of the string. For a model of
the forward rate curve, this can be inconvenient: while the initial term structure is
the natural input for the initial condition of a dynamic model, the time derivative
of the forward rates is not easily evaluated, especially given the irregularity in time
of forward rate trajectories which prevents such a model from being calibrated in a
numerically stable manner.

We therefore conclude that the question of including a second-order time deriva-
tive in Eq. (3.26) is not simply a matter of taste: its radically changes both the
dynamic properties of the equation and the nature of the initial conditions needed
to calibrate the model, in an empirically undesirable fashion. Our analysis thus
pleads for a description of yield curve deformations through a parabolic rather than
hyperbolic SPDE.

4. Conclusion and Perspectives

We have presented a parsimonious stochastic model for describing the fluctuations
of the term structure of forward rates: the forward rate curve is described as a
random curve oscillating around its long term average or, alternatively, as random
field solution of a stochastic PDE. The model studied in Sec. 3 should be viewed
as the simplest example of model incorporating the effect of slope and curvature in
forward rate dynamics. However this simple example has the benefit of emphasiz-
ing the role of the second derivative with respect to maturity in the evolution of
the term structure: indeed, as we have seen above, it is this second derivative which
tames the maturity-specific randomness and maintains a regularity in x while allow-
ing for independent shocks along maturities. It also gives the correct form for the
principal components as well as a qualitatively correct estimate for their associated
eigenvalues. These results show the importance of the concept of local deformation
explained in Sec. 2.5, of which our equation is the simplest example. The model in
Sec. 3 can be generalized to the case of state and time-dependent coefficients [8] but
the point is that a linear model with constant coefficients and flat term structure
of volatility is already sufficient for reproducing empirical facts which, in standard
interest rate models, need fine tuning of many parameters. Let us recall our main
results:

1. The linear parabolic SPDE (3.1) reproduces the qualitative form of the principal
components, the presence of a humped volatility term structure and the mean
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reverting properties of forward rates with two parameters and without inserting
ad-hoc structures in the noise terms.

2. The term structure deformation solution of (3.1) may be represented as a
Gaussian random field Xt(x), as an infinite-factor model (3.14) with Ornstein-
Uhlenbeck dynamics for the factors or as a diffusion Xt in a space of curves.

3. A large (or infinite) number of factors is compatible with the fact that a few
principal components capture most of the variance. The decay in the variance of
principal components results from the smoothing effect of the evolution operator
and is due to the impact of the curvature (convexity) on forward rate dynamics.

4. We do not require a humped term structure for the diffusion coefficient σ in order
to obtain a humped term structure for the volatilities of the forward rates: in fact
a flat term structure for σ already generates this hump in standard deviations
of forward rate movements.

5. The model provides a link between the geometry of the forward rate curve —
its shape and smoothness, measures by the principal components and their vari-
ances — and the dynamics, i.e., the time series properties of forward rates, as
measures by their mean reversion time and autocorrelation properties. Both sets
of properties are governed by the same parameters.

As mentioned in the introduction, our objective has been to obtain a faithful
continuous-time representation of the statistical properties of the forward rate curve.
Obviously such a model can be useful for simulating realistic scenarios for yield curve
movements. It remains to establish the link with the arbitrage pricing approach and
examine the consequences of our model for hedging interest rate options. As shown
by [4], such an analysis requires a careful specification of the class of strategies one
is willing to consider; also, as noted by [5], taking into account transaction costs
eliminates theoretical “arbitrage opportunities” present in a model such as (3.1).
These issues remain to be explored in more detail.

A remaining question is to explain the economic origin for the second-order term
in (3.1). We discuss this issue in a forthcoming work [8].
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