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We propose a model of a financial market with multiple assets that takes into account
the impact of a large institutional investor rebalancing its positions so as to maintain
a fixed allocation in each asset. We show that feedback effects can lead to significant
excess realized correlation between asset returns and modify the principal component
structure of the (realized) correlation matrix of returns. Our study naturally links, in
a quantitative manner, the properties of the realized correlation matrix — correlation
between assets, eigenvectors and eigenvalues — to the sizes and trading volumes of
large institutional investors. In particular, we show that even starting with uncorrelated
“fundamentals”, fund rebalancing endogenously generates a correlation matrix of returns
with a first eigenvector with positive components, which can be associated to the market,
as observed empirically. Finally, we show that feedback effects flatten the differences
between the expected returns of assets and tend to align them with the returns of the
institutional investor’s portfolio, making this benchmark fund more difficult to beat, not
because of its strategy but precisely because of its size and market impact.

Keywords: Liquidity; feedback effects; institutional investors; endogenous correlations.

1. Introduction

International financial markets have become increasingly dominated by large insti-
tutional investors — mutual funds, insurance companies, pension funds — which
account for a large fraction of holdings and trades in financial assets. For instance,
institutional investors in the US hold $25000 billion in financial assets, which rep-
resents 17.4% of total outstanding assets. Their positions in the US equity markets
amount to $12500 billion, which corresponds to holding 70% of the total equity
assets in the US (Gonnard et al. 2008, Tonello & Rabimov 2010). Two major features
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characterize large institutional investors over the last years. First, they build their
portfolios with the use of indices and exchange-traded funds (representing a sector,
a geographical zone or an asset class for instance), which have become increasingly
popular in the last years, and assets traded on large national exchanges (Gastineau
2010, Fuhr 2011, Boudreaux 2012). Secondly, while such asset managers do not
frequently modify their allocations, they do actively trade in the market: Carhart
(2012) documents that the average turnover for US mutual funds is 75%.

Large institutional investors build and manage their portfolios comprising
numerous assets taking into account the dependence structure between asset
returns. In particular, the correlation between asset returns is a key ingredient for
trading, portfolio optimization and risk management. It is very often considered as
reflecting a structural correlation between fundamentals of asset returns and hence
assumed not to vary a lot in time. Ever since Markowitz (1952), theoretical studies
show that, under the assumption of a constant correlation structure between asset
returns, optimal strategies are fixed-mix strategies, i.e. maintaining a fixed alloca-
tion in each asset in the portfolio. Typically, if the value of an asset increased, its
weight in the portfolio increases and the investor following a fixed-mix strategy sells
part of its positions in this asset, so as to come back to the target allocation for this
asset. The fixed-mix strategy implies “buying low and selling high”. Numerous the-
oretical studies (Evstigneev & Schenk-Hoppé 2002, Dempster et al. 2003, Mulvey
& Kim 2008) have shown that such strategies can enhance the long-term growth
rate of portfolios.

Whereas, the price of financial assets is traditionally modeled as an exogenous
stochastic process unaffected by investor strategies, the presence of institutional
investors, typically following fixed-mix strategies and which have a large impact
when trading, has implications for financial markets, in particular for the indices
and ETFs that they trade, and hence for the components of those indices and ETF's.

Indeed, many empirical studies, such as Aitken (1998), Sias (1996), Sias & Starks
(1997), detailed in Sec. 1.2, document the impact of large institutional investors.
They show in particular that trading by institutional investors tends to increase the
correlation between the assets that they hold and generate contagion effects to other
investors with similar balance sheets. In addition, the study of empirical correlation
matrices (Friedman & Weisberg 1981, Bouchaud et al. 2000) shows that the realized
correlation matrix of returns displays common features across stock markets — first
eigenvalue which is significantly larger than the others and associated to a “market”
eigenvector, with positive weights on each component, as shown in Fig. 1 in the case
of the Eurostoxx 50 — which strongly suggest the impact of institutional investors
on the dependence structure of asset returns.

The main contribution of this theoretical paper is to quantify the feedback effects
induced by the rebalancing of a large institutional investor on the dependence struc-
ture of asset returns (realized covariances and correlations of asset returns, eigenval-
ues and eigenvectors of the realized correlation/covariance matrix of returns) and
their implications in terms of spillover effects and portfolio allocations for other
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Fig. 1. Weight of each stock of the Eurostoxx 50 in the first eigenvector of the one-year empirical
correlation matrix of returns for Eurostoxx 50 (Y-axis) as a function of time (X-axis).

funds. Contrary to other studies which model feedback effects in specific moments
(near option expiries in Avellaneda & Lipkin (2003), during fire sales episodes in
Cont & Wagalath (2013b)), the impact of the large institutional investor described
here occurs at each period due to rebalancing and leads to permanent deviations
from asset fundamentals. We choose to consider that the large fund follows a fixed-
mix strategy, as it is one of the most popular asset management strategies. However,
other types of strategies could have been considered and our feedback framework
provides the flexibility to analyze their impact. Our study shows that rebalanc-
ing from institutional investors endogenously increases correlation between asset
returns, hence limiting the benefits of diversification and modifying the structure of
optimal strategies for investors in this market. Such feedback effects naturally lead
to a realized correlation matrix of returns with a first eigenvalue larger than the
others and associated to a market eigenvector, as observed empirically. The ana-
lytical results that we obtain for realized correlations, asset and fund volatilities,
eigenvalues and eigenvectors of the realized correlation matrix, are useful in a risk-
management and portfolio allocation perspective, not only for large institutional
investors whose impact is modeled in our study, but also for other investors who
suffer from contagion effects that we are able to quantify.

1.1. Summary

We propose a multi-period model of a financial market with multiple assets, in which
a large institutional investor maintains a fixed allocation across assets. Simulations
of this model, with realistic parameters estimated from time series of S&P500 stock
returns, suggest that feedback effects from the fund’s rebalancing lead to a signif-
icant increase in realized correlation between asset returns. We exhibit conditions
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under which the discrete-time model converges to a diffusion limit. By studying the
multi-dimensional diffusion limit for the price dynamics, we show that the pres-
ence of a large institutional investor maintaining a constant allocation across asset
classes may result in a significant and systematic impact on expected returns and
the correlation of returns. In particular, fixed-mix strategies dampen asset volatility
but increase correlation across asset classes. This rebalancing effect leads to a sys-
tematic bias in the first principal component of the correlation matrix, overweighing
assets with high turnover in the benchmark portfolio. In particular, in the presence
of feedback effects, and even starting from uncorrelated fundamentals, trading by
the large fund endogenously generates a realized correlation matrix of returns with
a first eigenvector with positive components. The impact of the large institutional
investor biases asset expected returns and decreases the performance of funds who
overweigh (respectively, underweigh) assets with large (respectively, low) expected
returns. These findings have consequences for risk-management and asset allocation.
We show that the impact of the large institutional investor modifies the risk/return
trade-off of portfolios composed from the same assets: an investor who factors these
effects into his allocations can improve his risk/return trade-off.

1.2. Related literature

Various empirical studies attest to the large market share of institutional investors.
Gonnard et al. (2008) study institutional investors of countries of the Organiza-
tion for Economic Co-operation and Development (OECD) while Tonello & Rabi-
mov (2010) focus on the institutional investors in the US. Such investors comprise
mutual funds, insurance companies and pension funds. Their investments amounted
to $40000 billion for funds in the OECD in 2005, which represents 150% of the gross
domestic product of the OECD. US institutional investors account for more than
half of those investments ($25000 billion) and prefer investing in equity markets
(50% of their positions).

The preferences of large institutional investors are examined in numerous empir-
ical studies. Del Guercio (1996) finds empirically that banks, contrary to mutual
funds, prefer investing in prudent stocks. Gompers & Metrick (2001) use a database
with seventeen years of data on large institutional investors and show that they
prefer holding liquid assets, while Ferreira & Matos (2008) find that institutional
investors have a strong preference for the stocks of large firms and firms with good
governance. Falkenstein (2012) shows that mutual funds prefer investing in liquid
stocks with low transaction costs and are averse to stocks with low idiosyncratic
volatility. Lakonishok et al. (1992) study the types of strategies followed by insti-
tutional investors and whether they follow trading practices which are potentially
destabilizing for asset prices. The impact of institutional investors on asset returns
is widely studied in the empirical literature. Aitken (1998) shows that the growth of
capital invested by mutual funds and other institutional investors in emerging mar-
kets resulted in a sharp increase of autocorrelation for the assets in those markets.
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Sias & Starks (1997) also finds that the larger the institutional ownership of a stock
in the NYSE, the larger its autocorrelations while Sias (1996) finds that an increase
in ownership by institutional investors on a given stock results in a greater stock
volatility.

Most theoretical studies model the impact of large institutional investors on a
single asset’s return and volatility. Almgren & Chriss (2000), Almgren & Lorenz
(2006) and Almgren (2009) model the permanent and temporary impact of a large
investor liquidating a position on a single asset and derive an optimal liquidation
strategy. Alfonsi et al. (2009) derive the optimal strategy to liquidate a large position
on an asset by taking into account the order book of the asset. Gabaix et al. (2006)
propose an equilibrium model which takes into account the supply and demand of a
large institutional investor and show that their trades can lead to volatility spikes.
They derive an optimal strategy for the institutional investor, in the presence of
its own feedback effects. These theoretical studies explain quantitatively the facts
described in the empirical literature cited previously, but mainly focus on a single
asset and derive optimal strategies for institutional investors. In particular, they do
not model the cross-asset impact of large institutional investors and the spillover
effects that they can generate. Kyle & Xiong (2001) study a market with two risky
assets and three types of traders: noise traders, convergence traders and long-term
investors. They show how the strategies implemented by each type of traders can
result in contagion effects and lead to endogenous correlation which can not be
explained by assets fundamentals.

Our quantitative results show that, even starting from homoscedastic fundamen-
tals, rebalancing by institutional investors naturally generates heteroscedasticity in
the covariance structure of asset returns, hence giving an economic explanation
for the variability of correlations and volatilities observed in financial markets and
which have been modeled, in an exogenous way, by various theoretical studies (Engle
2002, Da Fonseca et al. 2008, Gouriéroux et al. 2009, Stelzer 2010, Da Fonseca et al.
2013). In addition, we find that in the presence of feedback effects from institutional
investors, the realized correlation matrix of returns displays the features verified by
empirical correlation matrices: the first eigenvalue is significantly higher than the
other eigenvalues and is associated to an eigenvector with positive components.
While studies using random matrix theory such as Bouchaud et al. (2000) are able
to explain the emergence of a dominant eigenvalue for realized correlation matrices,
such studies generally lead to a first eigenvector which is invariant by rotation, and
hence fail to account for the fact that the first eigenvector is a “market” eigenvector,
with positive weights on each component.

1.3. Outline

This paper is organized as follows. Section 2 presents our framework for modeling
the impact of trading by a large institutional investor on asset returns. Section 3
studies the dependence structure of asset returns in the presence of feedback effects
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from the large institutional investor. Finally, Sec. 4 analyzes the impact of the large
institutional investor on the risk and returns of assets and for other investors in the
market.

2. Asset Dynamics in the Presence of a Large Institutional
Investor

2.1. Multi-period model

Asset fundamentals: Consider a discrete-time market, where trading takes place
at dates t, = kAt and which comprises n financial assets. The value of asset
i at tp is Si. Typically, one can consider that S’ is the value of an index or
an ETF representing a sector, asset class or geographic zone. Between t; and
tk+1, the value of each asset moves due to “fundamentals”, represented by an 11D
sequence (&g4+1)r>0 = (fli+l7 -, &1 k>0 of centered random variables with covari-
ance matrix Y. In the absence of other effects, the log-return of asset i between t
and tg41 would be

i ;
m(m— é>+¢&gﬂ, (2.1)

where m; is the “fundamental” expected return of asset 7 and X is the “fundamental”
covariance matrix of asset returns. 3 reflects the fundamental structure between the
n assets in the market. While most practitioners consider that the covariance matrix
is constant over a time horizon typically of one year, more statistically sophisticated
models have been proposed for modeling heteroscedasticity and the variability of
the fundamental covariance matrix (Engle 2002, Da Fonseca et al. 2008, Gouriéroux
et al. 2009, Stelzer 2010, Da Fonseca et al. 2013). In this paper, for clarity purpose
only, we assume that the fundamental covariance matrix ¥ is contant. Our results
can be extended to the case of a stochastic fundamental covariance matrix by means
of more technicalities, which do not bring more intuition to the problem raised by
this paper, namely disentangling the impact of fundamentals and fund rebalancing
on the dependence structure of asset returns.

The large institutional investor: Consider now a large institutional
investor/fund investing in this market and following a (long) fixed-mix strategy,
maintaining a fixed allocation in each asset. As discussed in Sec. 1, the fixed-mix
strategy is widely used by institutional investors, in between two allocation dates,
which correspond to a time frame of several months. At each date tj, the fund
holds a (constant, positive) proportion x; of each asset ¢ which means that the dol-
lar amount invested by the fund in asset ¢ at this date is equal to x; Wy where Wy
is the fund value/wealth at ¢;. Denoting by ¢ the number of units of asset ¢ held
at ti, the fixed-mix strategy implies that at each date:

¢4 Si = x; W (2.2)
At each period, the asset values may change due to fundamentals and the fund

rebalances its positions in order to maintain the target proportion x; in each asset 7.
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If the value of an asset increased (respectively, decreased) more than the others,
the fund sells (respectively, buys) units of this asset in order to maintain a fixed
portion of this asset in its portfolio. The fixed-mix strategy is a typical example of
a contrarian strategy, which implies “buying low and selling high”. The rebalancing
by the fund, in order to maintain its target allocation, generates a net demand of
o 41— ¢ units of asset i between t;, and tj41, in a self-financing manner:

n n
Wit1 = Z ¢Z+1SIZ+1 = Zdﬁcs}cﬂ- (2.3)
i=1 i=1
Price impact: The rebalancing of large positions by the fund — this is the case
when the fund is large — impacts prices in a nonrandom manner. The impact
of large orders on asset returns has been modeled in numerous manners: linear
(Obizhaeva 2011, Cont et al. 2013), square root (Bence et al. 2011), or more gener-
ally concave (Almgren et al. 2005, Moro et al. 2009). We assume that the impact of
this net demand by the fund on the return of each asset i is linear and is measured by
the depth D; of the market in asset i: a net demand of 1%'0 shares for security ¢ moves
the price of ¢ by one percent. Note that we choose a linear price impact for clarity
purpose only, as a general price impact function leads to the same continuous-time
limit as a linear price impact, as shown in Cont & Wagalath (2013a).

The discrete-time price dynamics: The value of asset ¢ at date ¢ has to
verify:

Sj.41 = Siexp (At (mi - E“) + \/thliwrl) X (1 + w) (2.4)

2 D;

The term exp(At(m; — Zél )+ VAtE} ;) corresponds to fundamentals while the

term 1 + (@b 1 ¢%)/D; is generated endogenously by feedback from the large
investor. However, as ¢}, depends on S}, given Eq. (2.2), we have to prove
that, at each period, the fund can rebalance its positions in a self-financing way
so as to keep its fixed allocation i.e. verify Eq. (2.4). This is done in the following

proposition.

Proposition 2.1. There exists a unique investment strategy which enables the fund
to keep a constant proportion x; invested in each asset i at every period k, in a self-
financing way and (S, W) verify Eqgs. (2.2)-(2.4).

The proof of this proposition is given in Appendix A.1. At each period, the
return of an asset can be decomposed into a fundamental component and a system-
atic component which is generated endogenously by the large fund’s rebalancing.
We remark that when market depths are infinite (D; = c0), the fund’s rebalancing
does not generate any feedback on asset returns and assets move according to “fun-
damentals” only, which are captured by the fundamental covariance matrix 3 and
the fundamental expected returns m.
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2.2. Simulation experiments

In this section, we present some results of simulation experiments which illustrate
the impact of feedback effects from a large institutional investor following a fixed-
mix strategy on the realized correlation between asset returns and the principal
component properties of the realized correlation matrix of returns.

Choice of parameters: We simulate the multi-period model in a simple example
of homogenous fundamental volatility, correlation and expected return. In order to
compare our numerical results with empirical results on the S&P500 in 2006, we
choose the following realistic parameters. The simulated market comprises n = 500
assets and trading is possible everyday (At = 1/250). Each asset has a fundamental
expected return m; = 11% (equal to the return of the S&P500 in 2006) and a
fundamental volatility \/ﬁ = 10% (equal to the realized volatility of the S&P500
in 2006). We denote by p = %, ;/1/%;:%; ; the fundamental correlation between
any pair of assets.

We consider an institutional investor maintaining a constant portion z; = 1/n =
0.2% invested in each asset ¢ and the initial position of the fund in each asset is
equal to one fifth of the respective asset market depth: for all i, ¢} /D; = 1/5. This
choice is legitimated by empirical studies: Tonello & Rabimov (2010) shows that
the size of institutional investors over the last years is approximately $25000 billion,
among which 50%, i.e. $12500 billion are invested in US equity markets. As a proxy
of market depth, we use, following Obizhaeva (2011),

Average Daily Volume
0.33 x Daily Volatility -

D= (2.5)

Given that in 2006 the average daily volume of the US equity market was $80 billion
and the realized volatility of the S&P500 was 10%, we find that the depth of the
US equity markets is

80

10%
0.33 x 250

Assuming, for example, that 60% of the institutional investors follow a fixed-mix
strategy, this legitimates our choice of

~ $38000 billion. (2.6)

i 12500 1
—0 = _— = —
D, = 00% X 55505 = 5+ (2.7)

Note that we choose to compare our numerical results to empirical results on the
S&P500 in 2006 because the recent financial turmoil started in 2007 and, since then,
the US equity market was subject to major fire sales and deleveraging phenomenon,
which were the main source of feedback in those markets, as analysed in Cont &
Wagalath (2013a).

For each of the 10000 simulated scenarios, we compute the realized volatility
of asset returns and the realized correlation between asset returns. The following
figures display the distribution of those quantities, in the case of p = 0. We compare
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Fig. 2. Distribution of realized correlation between assets 1 and 2 (with p = 0) with and without
feedback effects. The X-axis represents the value of the realized correlation and the Y-axis the
associated probability.

those distributions to the case without feedback effects, which corresponds to the
case when market depths are infinite.

Realized correlation and realized variance: Figure 2 shows that the insti-
tutional investor’s strategy increases realized correlation between asset returns.
Whereas without feedback effects, the distribution of realized correlation between
the two assets is centered around its fundamental value p = 0, we witness, in the
presence of feedback effects, that the distribution of realized correlation is shifted
towards positive values, centered around an average value of 10% and with values
over 20% with significant probability. Even starting with zero fundamental correla-
tions, feedback effects generate, on average, a realized correlation of 10% between
assets. In addition, numerical experiments show that the price impact of fixed-mix
strategies decreases asset volatility: starting from fundamental asset volatilities of
10% and a fundamental correlation parameter p = 0, realized volatilities of asset
returns are centered around a value of 7%. This is due to the fact that the fund
follows a “contrarian” strategy: it buys (respectively, sells) assets that decreased
(respectively, increased) the most, hence dampening their decrease (respectively,
increase) and, overall, dampening the amplitude of price moves.

Average pairwise realized correlation and highest eigenvalue of the real-
ized correlation matrix: Table 1 displays the average for the average pairwise
realized correlation over 10% simulations, for different values of fundamental corre-
lation p and fund sizes ¢{/D;. It shows that, for each choice of parameters, due to
the impact of the large investor, the average pairwise correlation is higher than its
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Table 1. Average for the average pairwise realized correlation
for different values of fundamental correlation p and fund sizes
(as a fraction of market depth) ¢ /D;.

0 _ 1 0 _ 1 0 _ 1

P D; — 10 D;, 5 D, 3
0 2% 5% 10%
10% 12% 15% 21%
15% 18% 22% 29%
25% 29% 35% 44%
50% 55% 61% 69%
75% 79% 82% 87%
90% 92% 93% 95%

In comparison, the average pairwise one-year realized corre-
lation of the S&P500 in 2006 was 21%.

fundamental value in the presence of feedback effects. Furthermore, we see that the
larger the fund’s positions as a fraction of asset depth (i.e. the larger the fund’s
positions or the lower the asset depth or liquidity), the larger the impact on the
average pairwise correlation. In 2006, the average pairwise one-year realized corre-
lation in the S&P500 was 21%. Table 1 shows that with a reasonable and realistic
choice of parameters for the fund’s size, for example ¢}/D; = 1/5 as discussed in
the beginning of this section, an homogenous fundamental correlation of only 15%
combined to feedback effects generated by the rebalancing of the fund’s positions
generate the 22% average pairwise realized correlation observed empirically.

Table 2 leads to the same conclusions: the presence of the large institutional
investor increases the value of the largest eigenvalue of the realized correlation
matrix, compared to its fundamental value which is given in the column ¢ /D; = 0.
Furthermore, the larger the fund’s positions as a fraction of market depth, the larger
the eigenvalue of the realized correlation matrix. While the largest eigenvalue of the
one-year realized correlation matrix of the S&P500 in 2006 was 110, we see that
our model leads to this level of largest eigenvalue starting from a fundamental

Table 2. Average for the largest eigenvalue of the realized correlation matrix
for different values of fundamental correlation p and fund sizes (as a fraction of
market depth) ¢f/D;.

0 _ 90— 1 0 _ 1 % _1

p D; — D; — 10 D, 5 D, — 3
0 1 8 9 11
10% 51 64 79 105
15% 76 93 113 146
25% 126 149 175 216
50% 251 277 307 345
75% 375 394 412 434
90% 450 459 467 476

In comparison, the largest eigenvalue of the one-year realized correlation matrix
of the S&P500 in 2006 was 110.
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correlation of 15%, which corresponds to a fundamental largest eigenvalue of 76,
combined to feedback effects, in the case where ¢f/D; = 1/5.

2.3. Continuous-time limit

We now analyze the continuous-time limit of the multi-period model: the study of
this limit enables to obtain analytical formulas for realized correlation between asset
returns, eigenvalues and eigenvectors of the realized correlation matrix and asset
expected returns, which confirm quantitatively the effects observed in the numerical
experiments.

The following theorem describes the diffusion limit of the price process.

Theorem 2.2. Under the assumption that there exists n > 0 such that:
E(|lexp(n€)]]) < oo and  E([[¢]|"**) < oo, (2.8)

the process (SlﬁJ , WLﬁj)tZO converges weakly to a diffusion process (Py,Vi)i>0 as
At goes to 0 with:

dP} = bi(P,V;)dt + (a(P;,V;)dBy);, 1<i<n, (2.9)
dVy = bpi1 (P, Vi)dt + (a( Py, V;)dBt)pt1, (2.10)

where By is an m-dimensional Brownian motion and a (respectively, b) is a
Mpi1xn(R)-valued (respectively, R valued) mapping such that

ai (S, W) Z x VZi, (2.11)

"L 00; " 9%,
bi(S, W) = 5. (S, W,0)m; + = Z 5 8zl (S, W,0)%,,,  (2.12)
J

=1

where 6 is defined in Lemma A.1, m; = m; —%;;/2 and VY isa square-root of the
fundamental covariance matrix.

In the continuous-time limit, at each date ¢, the fund allocates x; to asset 7. Its
holdings in asset i are:
z; Vi
P}

¢ = (2.13)
The proof of this theorem is given in Appendix A.2. ¢ and b can be computed
explicitely from Lemma A.3 and Lemma A.4 in Appendix A.2. Theorem 2.2 enables
to quantify, in a tractable manner, the impact of the large fund on asset dynam-
ics. In the next sections, in order to characterize this impact more intuitively, we
will study the impact at order one in liquidity, which enables us to decompose
realized correlations, eigenvalues, eigenvectors and fund volatility into a stationary
fundamental part and a liquidity-dependent and path-dependent part, generated
endogenously by the large institutional investor.
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In the case where market depths are infinite (for all i, D; = +00), the expression
for a and b simplifies to

aix(P,V)=PVS;, and b0'(P,V)=P'm;, 1<i<n, (2.14)

where A is a square root of ¥ and asset prices follow a multivariate Black and
Scholes dynamics with expected return m and covariance matrix >:

= exp((X.m— %) t—|—X.ABt>.

When market depths are finite, feedback effects from the large fund modify this
fundamental price dynamics, as described in the next sections.

(2.15)

3. Dependence Structure of Asset Returns

In this section, we study the impact of the large fund’s rebalancing on the depen-
dence structure of asset returns and we show that this structure may depend more
on the type and market cap of the various strategies used by large market players
than on fundamentals. The fund’s impact can be quantified by studying the real-
ized covariance/correlation matrix of asset returns (Andersen et al. 2003, Barndorff-
Nielsen & Shephard 2004).

3.1. Realized covariance and correlation between asset returns

Proposition 3.1 shows that realized covariances and correlations can be decomposed
into a fundamental component and an endogenous component generated by the
fund’s rebalancing strategy. When the rebalancing volumes are large compared to
the depth of assets, this endogenous component is exacerbated and can become
significant compared to the fundamental component.
The realized covariance matrix of asset returns between ¢; and t9, denoted
Clt,,t2), is defined by
i 1 i 1y pi i 1y pi
C[tl,tg] = m([h’lp 7lnP }tz - [lnP 7lnP }tl), (31)
where [In P?,In P7]; is the quadratic covariation between In P* and In P7 on [0, ]
and the realized correlation between ¢; and t, is defined by
,J
it (32)

t1,t2] iy Wi 1-
[t1,t2] ( (tr 1] [jtf,tg})z
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Proposition 3.1. The realized covariance and realized correlation between assets 1
and j returns can be respectively decomposed as follows:

C[lé{T] = Ei,j + AIA(I)}T le (EjJ — Zl}j) =+ AJA(I)% le(Eu — Ei,j) + O(||A||2),

=1 =1
(3.3)
iy i NADE & Y
R = == =) @ (Ej,z -5 EN)
’ \/EMEM \/Ei,iZj,j =1 Ei,i

4 Ay Zx( St ) +oqar (3.4
EllZ]Jl - l 7,1 .

where A is an n-dimensional vector representing the initial holdings of the fund in
asset i as a fraction of market depth:

%

A= 3.5
i (35)
and A®L. is a measure of the volume traded on asset i by the large fund:
T
; dgi 1 [T ¢
A<Iﬂ=1+/ (1——) — [ Zeas>0 3.6
’ 0 o TJo o 0

and E(O(||A]|?)/||A]|?) is bounded when A goes to zero.

The proof of this corollary is given in Appendix A.3. In the presence of feedback
effects, the realized covariance/correlation matrix is the sum of the fundamental
covariance/correlation matrix and an excess realized covariance/correlation matrix
generated by the impact of the fund’s rebalancing strategy.

The magnitude of the institutional investor’s impact on asset returns is naturally
measured by the quantities

b0
A= D; (3.7)
which represent the size of the institutional investor’s positions in each asset, as a
fraction of asset market depth and Proposition 3.1 gives the expansion at order one
in ||A|| of the realized covariances and correlations.

Equation (3.4) shows that realized correlations between asset returns are
impacted by the strategy followed by the institutional investor, namely its size
in each asset as a fraction of market depth (Aq,...,A,,), its allocations (z1,...,zy)
and its rebalancing strategy (A®!, ... A®").

They can deviate significantly from fundamentals when the size of the fund’s
positions and trading volumes are large compared to asset market depths. As the
size of institutional investors and their market shares has become very large over
the last years, as discussed in Sec. 1, Proposition 3.1 shows that the dependence
structure of asset returns may depend more on the type and market cap of the
various strategies used by large market players than on fundamentals.
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We remark that when the fund invests significantly in one asset ig, such that
A;, > 0, and even if its positions on the other assets are negligible (A; = 0 for
i # 1p), the realized covariance between those assets and iy is modified and different
from the fundamental covariance, generating a contagion effect from this asset to
all other assets held by the fund.

3.2. Case of zero fundamental correlations

In this section, we examine the case when the fund invests in assets with zero
fundamental correlations: the fundamental covariance matrix ¥ is diagonal and we
write:

Yii=o0 and %;; =0, i#j. (3.8)

We show that rebalancing by the large fund endogenously generates positive realized
correlation between assets with zero fundamental correlation, reducing the benefits
of diversification for the fund. The presence of the fund induces a minimum struc-
tural realized correlation between asset returns, which depends on liquidity and
rebalancing flows. Even starting from a fundamental correlation matrix which is
the identity, feedback effects from the large fund naturally lead to the empirically
observed structure for realized correlation matrices: a dominant eigenvalue, which is
of the order of the number of assets in the market n, and associated to an eigenvector
with strictly positive components, corresponding to the market.

Using Eq. (3.4), we can compute the realized correlation between assets i and j
returns in the case of zero fundamental correlations:

05T, i T
Riflyy = A2 LAY 4 A A@JT+O(||A||) (3.9)

[OT

Equation (3.6) implies that A@% > 0 and we deduce that feedback effects from
the fund’s rebalancing generate positive realized correlation between assets with
zero fundamental correlations. Intuitively, this stems from the fact that the system-
atic strategy used by the fund creates a similar pattern of behavior for all assets
and shows that diversification effects are reduced by the fund’s own impact. This
analytical result confirms quantitatively the numerical results of Fig. 2. Excess cor-
relation is exacerbated by the size of the fund relative to market depth (||A||) and
the volumes of rebalancing (A®), which are endogenously determined by the fund’s
strategy (x1,...,2,). Our results show that when liquidity effects are accounted
for, observed levels of realized correlation across assets are compatible with the null
hypothesis of absence of correlation in fundamentals.

Equation (3.9) enables to derive a structural minimum for the realized correla-
tion between a given pair of assets ¢ and j:
This lower bound for realized correlation is triggered by the mere presence of the
institutional investor following a fixed-mix strategy. In particular, the more the fund

A]%). (3.10)
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invests in two assets, the greater the correlation it generates endogenously between
the two assets.

As the realized correlation matrix R 7] has strictly positive terms, the Perron
Frobenius theorem states that it has an eigenvalue which is strictly higher than its
other eigenvalues and which is associated to an eigenvector with strictly positive
coordinates. Furthermore, this eigenvalue belongs to the interval:

1 i i
i#£] J#i
The term:
1 .
i,j
n(n —1) ZR[O,T} (3.12)
i#j

represents the average pairwise correlation. What is remarkable is that, even starting
with a fundamental correlation matrix which is equal to the identity, and hence has
all eigenvalues equal to 1 and no particular structure for eigenvectors, the impact
of the fund naturally generates a correlation matrix with a dominant eigenvalue,
of the order of n and associated to a“market” eigenvector. Our results enable to
explain quantitatively the existence of such a market vector associated to the largest
eigenvalue of the correlation matrix, as illustrated in Fig. 1.

Finally, using Proposition 3.1, we find that the realized variance of asset ¢ returns
is given by

o = 0P (1= 2(1 = 2;) A, ADT) + O(|A]J?) < o, (3.13)

which implies that feedback effects decrease the realized variance of asset returns.
This is consistent with the fact that the fund buys (respectively, sells) assets which
decreased (respectively, increased) the most, dampening the amplitude of asset
movements.

3.3. FEigenvalues and eigenvectors of the realized correlation
matric

We now analyze the principal component properties of the realized correlation
matrix of returns, in the case of a general fundamental correlation matrix. Our
study enables to establish a quantitative link between the eigenvalues and eigenvec-
tors of the correlation matrix and the strategy implemented by the fund.

As the realized correlation matrix in the presence of feedback effects can be
considered as a perturbation of the fundamental correlation matrix, one can expect
that its eigenvalues and eigenvectors are also perturbations of the corresponding
eigenvalues and eigenvectors of the fundamental correlation matrix. Recall that the
realized correlation matrix Ry 7} and the fundamental correlation matrix R are
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real-valued matrices defined respectively by:

Chd iy T
R[O T = # and R 7 = 71 ; T (314)
(C[O,T}C[O,T])Q (Zr397)

As they are both symmetric and nonnegative, we know that there exist eigenval-
ues v1 > -+ >w, > 0,77 > -+ > 7, >0 and two orthonormal bases (¢1,...,1¥,),
({4, ...,4,) such that for all 1 < j < n:

R[O,T]¢j = ijj and R_wj = @jwj' (315)

The following proposition gives analytical formulas which quantify the impact of
the large institutional investor on the principal component properties of the realized
correlation matrix Ryg 77

Assumption 3.2. 7; defined in Eq. (3.15) is a simple eigenvalue for the funda-
mental correlation matrix R.

Proposition 3.3. Under Assumption 3.2, there exists v > 0 such that if ||A|| < 7,
then v; is a simple eigenvalue for the realized correlation matriz Ry 1) and:

vj =5+ ¥ VR ¢ + o(||A]) (3.16)
and v; is associated to the unit eigenvector 1, which is collinear to:
o
Ui VR Y
+27Jw +o([[AlD, (3.17)
ki

where vj,ﬁj,%-,gj are defined in Eq. (3.15), VR is a symmetric matriz defined by
[VR];i =0 and for i # j:
NADE A A(I)J
[VR];; = xl( ’j 21 l) xl( Zij > l)
! \/Ellzj]; \/Ellzj]; ]J o

(3.18)

n

and o(||A]])/||A|| converges almost surely to zero when A goes to zero.

Proposition 3.3 is a well-known result of perturbation theory for eigenvalues and
eigenvectors of symmetric matrices, analogous to the result of (Allez & Bouchaud
2012, Eq. (2.2)). It gives a tractable formula for the eigenvalues and eigenvectors of
the realized correlation matrix in the presence of feedback effects from the investor
following the fixed-mix strategy (z1,. .., 2, ). Due to such feedback effects, the eigen-
values and eigenvectors of the realized correlation matrix depend on the sizes and
allocations of institutional investors.

This impact naturally modifies the profile of risk in the market for all investors,
and for the large institutional investor itself. Assume for example that the institu-
tional investor, in order to reduce its volatility, has chosen a strategy (x1,...,x,)
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so as to stay orthogonal to 1)y, the first eigenvector of the fundamental correla-
tion matrix, associated to the largest eigenvalue and hence the largest regime of
volatility. As a consequence, (z1,...,x,) is chosen in the subspace generated by
1o, ..., 1,. However, the impact of the fund’s rebalancing generates a change in the
first eigenvalue, equal to:

~ "y, VR ¢y —
k
Z ﬁiﬁb (3.19)
= U k
whose direction is precisely in the subspace generated by s, . .., 1, containing the
vector of allocations (z1,...,xz,), hence generating larger-than-expected realized

volatility.

Example and numerical tests: In this paragraph, we illustrate how feedback
effects impact the principal component properties of the realized correlation matrix
of returns in a simple example where all parameters are homogenous: asset fun-
damental volatilities are equal to o, fundamental correlation between any pair of
assets is p, the large institutional investor’s allocation in each asset i is x; = 1/n
and the size of its position in each asset as a fraction of market depth is A; = A.

Corollary 3.4. Under the assumption of homogenous fundamental asset volatilities
o, correlations p, allocations x; = 1/n and ratios holdings to market depths A; = A,
the largest eigenvalue of the realized correlation matriz of returns is equal to:

1-2p 1
n

v =1+ (n—1)p+2A(1—p) (p-i— n—2p> iA@{f—i—o(A) (3.20)
j=1

and is associated to the first eigenvector 11 which is proportional to:

ADL
1 .
an(A) | ]+ 8.8 | Adi | + o), (3.21)
1
AP
where
an(A) = 1+K(1 - p) (—p—|— Spn_ L 2<1n; ”>> zn:m;, (3.22)
Bu(A) = (n— 2K(1 — ) (p n 1‘7'”) (3.23)

Equation (3.20) shows that feedback effects increase the value of the largest
eigenvalue of the realized correlation matrix. We simulated 10* price trajectories of
our model and, for each trajectory, we calculated numerically the largest eigenvalue
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Table 3. Average error for the largest eigenvector of the realized correlation matrix.

Theoretical eigenvalue equation (3.20)  Fundamental eigenvalue
numerical eigenvalue numerical eigenvalue

Average Error 10% 60%

of the realized correlation matrix and computed the theoretical largest eigenvalue
given by Eq. (3.20). Table 3 shows that the average error made by using the theoreti-
cal formula of Eq. (3.20) to estimate the largest eigenvalue of the realized correlation
matrix is 10%, which is significantly lower than when using the fundamental largest
eigenvalue (error of 60%, using fundamental largest eigenvalue, which is equal to
1+ (n—1)p).

Equation (3.21) gives the structure of the first eigenvector which is associated
to the largest volatility mode in the market i.e. largest eigenvalue of the realized
correlation matrix. Interestingly, we notice that, whereas in the absence of feedback
effects and using the parameters of Corollary 3.4, the first eigenvector should be
proportional to the market vector ¥(1,...,1), due to the impact of the fund’s rebal-
ancing trades and in the case of a well-diversified fund (n large), the first eigenvector
is also driven by the vector *(A®L, ... A®ZL) which represents the (time-weighted)
rebalancing volumes by the large institutional investor. In scenarios where the fund
trades significantly more in one asset than in others, feedback effects generate a
larger weight for this asset in the first eigenvalue of the correlation matrix.

4. Asset Returns and Fund Performance

In this section, we study the impact of the fund’s rebalancing strategy on asset and
fund expected returns. Recall that, in the absence of feedback effects from the fund,
the benchmark return for asset ¢ is m; and hence the benchmark return for the

institutional investor is:
n

benchmark return for the institutional investor: Z Tim;. (4.1)
i=1
4.1. Asset expected returns

Following the same method as in Corollary 3.1, we can prove the following propo-
sition which gives the expansion at order one in ||A]| of the expected return of each
asset.

Proposition 4.1. The (instantaneous) expected return of asset i at date t in the
presence of feedback effects from the institutional investor investor is:

% - ¢t A (Z xym; — mi) + O([|A[1?), (4.2)

where b;, A and ¢t are defined respectively in Theorem 2.2, Eq. (3.5) and Eq. (2.13).
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m; is the benchmark return for asset ¢. Trading by the institutional investor gener-
ates a systematic nonfundamental component in the expected return of each asset.
The nature of the fund’s impact on the expected return of asset i depends on the
difference between the benchmark expected return for asset i, m;, and the bench-
mark expected return for the fund, given in Eq. (4.1). When m; is larger than the
fund’s benchmark return, Eq. (4.2) shows that the instantaneous return for asset 4
is lower than m; and trading by the large institutional investor decreases (respec-
tively, increases) the expected return of assets whose benchmark expected returns
are larger (respectively, lower) than the benchmark return of the fund. The fund’s
rebalancing strategy endogenously dampens the difference between expected returns
of assets with large fundamental expected returns (compared to the benchmark) and
those with low fundamental expected returns.

Proposition 4.1 enables us to compute the expected return for the large institu-
tional investor and for other (small) investors.

Corollary 4.2. At date t, the (instantaneous) expected return for the large insti-
tutional investor and for a (small) investor holding a portion y! of each asset i are
given respectively by

Swmi+ Y wikid] (Z zimi - w) +O(IIA]2), (43)
=1 =1 =1

Do vimi+ Y yilid (Z wymy — mi) +O(IA]%). (4.4)
i=1 i=1 =1

The expected return for the large institutional investor is lower (respectively,
higher) than its benchmark return given in Eq. (4.1) if it overweighs (respectively,
underweighs) assets with large fundamental expected returns. When the fund over-
weighs assets with large expected returns, it will generate, due to its own market
impact, lower-than-expected returns.

The expected return for a small fund with positions y; is lower than the small
fund’s fundamental return, which is given by:

n
benchmark return for the small fund: Z yim; (4.5)

i=1
when it overweighs assets with large fundamental expected returns (i.e. when ! is
large for assets ¢ such that m; is larger than the benchmark return of the institu-
tional investor given in Eq. (4.1)). Whereas large institutional investors are con-
sidered as benchmarks by other investors, we show that, precisely due to the large
market impact of such large institutional investors, other investors who try to beat
the large fund by overweighing (respectively, underweighing) assets with expected
returns larger (respectively, lower) than the large fund’s benchmark will experience
lower-than-expected returns. Intuitively, this is a natural consequence of Proposi-
tion 4.1 which showed that, due to feedback effects, asset returns tended to align
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with the large fund’s benchmark return, hence generating lower-than-expected per-
formance for assets with large drifts.

4.2. Optimal strategy and efficient frontier in a simple example

The following example shows how supposedly optimal strategies become sub-
optimal due to the presence of large investors. When the size of the fund is sig-
nificant, all investors (including the large fund itself) have to take into account the
impact of the large fund when choosing their allocations.

We consider the case of a market with n = 2 assets with zero fundamental
correlation and identical fundamental volatility. We write:

N = <002 f2> and m = <Z:> (4.6)

and we assume, for example, that m; > mo. The large institutional investor starts
investing in this market and keeps a constant proportion of each asset in its portfolio,

equal to 50% for each asset:
50%
X = . (4.7)
50%

Consider now a small fund investing in those two assets and choosing, at date
t, an allocation y; in asset 1 and y? = 1 — y; of asset 2 by maximizing a mean-
variance criteria. The small fund needs to estimate expected returns, variances
and covariances and then calculates its allocation in each asset by solving a mean-
variance criteria:

yr = argmax{Uy(y);y € R}, (4.8)
where
Ui(y) = yE(returny ;) + (1 — y)E(returng ;) — v(y*E(variance; ;)
+ (1 — y)*E(variances ) + 2y(1 — y)E(covariance; 2 ¢)), (4.9)

where v is a parameter of risk aversion for the small fund.
In the presence of feedback effects from the rebalancing by the large institutional
investor, using Proposition 3.1 and Proposition 4.1, we find that:

Uo(y) = ymi + (1 — y)ma — v (y> + (1 —y)*) + (W(mg — m1)>
+70% (A1 + (1 —y)? Ay — y(1 — y) (A1 + A2)) + O(A?). (4.10)

Thanks to Eq. (4.10), the following proposition follows immediately. Note that
we choose to focus on date 0 for clarity purpose only.
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Proposition 4.3. At date 0, the optimal allocation in asset 1, associated to the
mean-variance criteria in Eq. (4.8), is given by:
mi1 — Mo Al - A2

All?). 4.11
So7 T TOUAR).

1 my1 — Mo
1
=—+ ——"+ (A1 +A
o= gt Tz Tt

The quantity 1/2 + (m1 —ms)/(4y0?) is the optimal allocation in asset 1 in the
absence of feedback effects. When there are no feedback effects, the mean variance
criteria gives an optimal proportion in each asset which is constant and hence implies
that the small fund’s strategy will be a fixed-mix strategy. We see that the larger
the difference between the fundamental expected return of asset 1 and 2, the greater
the allocation in asset 1 (recall that my > mgy). When risk aversion goes to infinity
(v — 00), the optimal allocations do not depend on the asset fundamental expected
returns.

In the presence of feedback effects, the strategy 1/2 + (my — ma)/(4y0?) is no
longer optimal. The presence of large institutional investors generates a nonoptimal-
ity for strategies which are optimal in the absence of feedback effects. If the small
fund does not take into account the market impact of the large fund, it will choose
the benchmark optimal strategy 1/2 + (m; — ma2)/(4y0?) which is not optimal.
On the contrary, if the small fund estimates the fundamentals of the market (from
price series when the large investor was not trading in the market) and knows the
strategy of the large institutional investor (which is realistic, for example, for large
mutual funds whose strategies have to be disclosed), the small fund will be able to
follow the strategy y; which is optimal for the mean-variance criteria in Eq. (4.8).
Figure 3 shows that the efficient frontier is modified in the presence of feedback
effects. We see that taking feedback effects into account enables the small investor
to diminish the volatility of its portfolio for a given return. This stems from the fact
that fixed-mix rebalancing induces a decrease of realized asset volatilities, as shown
in Sec. 3.2, which can be used by an investor following the optimal strategy y; to
build a less volatile portfolio. Trading and risk-management decisions by investors
need to take into account the allocations and sizes of large benchmark portfolios
built by institutional investors.

In this example, feedback effects from the large fund decrease the expected return
of asset 1 and increase that of asset 2. By direct computation of Eq. (4.2), we find
that the instantaneous drift for asset 1 is equal to mq 4+ A1(me —mq)/2 (< my) and
that of asset 2 is equal to mg + Aa(my —mz)/2 (> ms). Note that those results are
valid in the limit ||A|] — 0, and hence asset 1 still exhibits larger expected returns
than asset 2. However, the difference of expected returns between the two assets is
dampened due to feedback effects, as discussed in the previous section. One could
then wonder why, in Proposition 4.3, putting aside the case when As is significantly
larger than Ay, the optimal strategy in the presence of feedback effects gives a higher
weight to asset 1 than without feedback effects (yi > 1/2 + (m1 — ma)/(4y0?)).
This is due to the fact that feedback effects also decrease the volatility of each asset.
Using the results of Sec. 3.2, we find that the instantaneous variance of asset 1
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Fig. 3. Efficient frontier with and without feedback effects. The x-axis represents the volatility of
optimal strategies and the y-axis represents their expected returns.

(respectively, asset 2) at date 0 is given by o?(1 — A1) (respectively, o%(1 — A3))
and hence the instantaneous Sharpe ratio of asset 1 (respectively, asset 2) is given
by mi/o x (1 + (Aym1)/(2ms)) (respectively, mao/o x (1 4+ (Aama)/(2m1))). As a
consequence, we notice that feedback effects increase the Sharpe ratio of asset 1,
which still has a higher expected return than asset 2: this explains the fact that the
optimal strategy overweighs asset 1. However, when As is significantly higher than
A1, the gain in Sharpe ratio for asset 2 is much larger than for asset 1 and hence
the optimal strategy will overweigh asset 2, as stated in Proposition 4.3.

4.3. Trade-off between diversification and impact

The rebalancing impact described in the previous sections limits the benefits of
investing in the fixed-mix strategy. Typically, large institutional investors prefer
investing a significant portion of their wealth in such strategies, in order to enhance
their returns, and keep a minimum portion in cash or money-market securities. We
show that, whereas it is indeed favorable for the fund to diversify by investing a
portion of its wealth in a fixed-mix strategy, there exists a critical size for such an
investment above which the impact of rebalancing generates losses for the fund.

Consider that the fund holds a quantity C of cash and it can invest a portion
a € [0,1] in the fixed-mix strategy and a portion 1 — « at the risk free rate r
(typically through T-Bills). Given Corollary 4.2, the expected return for the fund
at date 0 is hence equal to:

(I-a)r+a <i rmy —|—ixiAi (i rmy —ml>> (4.12)
1=1 i=1 =1

Typically, in order to generate a large return, the fund chooses a vector of allocations
(x1,...,2,) for the fixed-mix strategy which overweighs assets with large expected
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returns and hence:

zn:xiAi (i Tymy — ml> < 0. (4.13)
i=1 =1

In addition, as the fund invests a portion « of its cash C' in the fixed-mix strategy,
we have A; = aCux;/(P¢D;). As a consequence, the expected return for the fund
can be written as

a2 (Z €X; ;&Dl

i=1

<z”: Tymy — ml>> + (i Tym; — r) + 7. (4.14)
=1

=1
Note that:

{IJiC -
T zm;—m; | <0 (4.15)
3 et (e =m)
while
> amy—r>0. (4.16)
=1

Equation (4.14) shows that the fund’s expected return is not increasing in a.
There exists:

*_ E?:l rmg —r (4.17)
2300, @}C/PiD; (my — 30, wymy) .
such that the return is increasing on [0,a*] and decreasing on [a*,1]: when the
fund starts investing in the fixed-mix strategy, such investment actually increases
its expected return. The more the fund invests in the fixed-mix strategy, as long
as the portion allocated is lower than o, the larger the expected return for the
fund. When the fund invests more than a portion o* of its wealth in the fixed-mix
strategy, its own rebalancing impact actually lowers its expected return and, the
more it overweighs the fixed-mix strategy (above this weight of a*), the lower the

expected return for the fund.
The critical size for the investment in the fixed-mix strategy is equal to

«

D T — T
o' C = — . 4.18
2SI, w2/ BD: (mi — S mom) )
When the fund invests more than o*C' in the fixed-mix strategy, its performance
will be diminished systematically by its own market impact.

Appendix A
We denote

My, = (S’“> e (ry)" (A1)
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and

. P ,
Zi = At <m - ) + VAL . (A.2)

As the large fund has long positions, we know that z; > 0 for all 1 <7 < n. In
addition, we have:

Zn:fl,‘i =1. (A3)
=1

A.1 Proof of Proposition 2.1

Let us show the following lemma which will imply Proposition 2.1.

Lemma A.l. There exists 0 : (R%)"™ x R™ — (R%)"' such that for every
compact set K C (R)"*L, there exists ex > 0 such that 6 is C> on K x B(0, ex)
and such that for all periods k > 0:

Sk 01(Sk, Wi, Zit1)
S
( et ) N : (A4
Wit Skt 0n(Sk, Wk, Zi41)
Wit1 On+1(Sks Wy Zg41)

and (Sk, Wy) verifies Egs. (2.2)~(2.4). Here Zy11 is defined in Eq. (A.2).

Proof. Let Mj, € (R%)""!, defined in Eq. (A.1), and &1 be given, thus fixing the
value of ¢} = z; M /M;. We can write Eq. (2.4) as

M,é+1 = A;(My, Zy41) + W_HBi(Mk’ Zk+1)M]?_t11 (A.5)
for 1 <4 <mn, where A; and B; are defined on (Rj)”*l x R™ by:
. . Mt
Ai(M, Z) = M exp(ZY) (1 - xJWT) (A.6)
Bi(M,Z) = M’ exp(Zi)% (A7)

which implies that

Mgy = 5 (Ai(Mi, Zsn) + (AR (My, Zia) + 4Bi(My, Zer) M. (A8)
Reinjecting into Eq. (2.3), we find that M ,?f:ll is a fixed point of the function
1 - {L‘Z‘M]?+1 2
v(z) =5 ; T’i(Ai(Mka Ziky1) + \/Ai (Mg, Zg1) + ABi(My, Zg 1))

(A.9)

Let us show that v has a unique fixed point on R
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Existence: Given the expression of v, it is clear that for x large enough, v(z) <
z. We then examine the three following possibilities: there exists i such that
Aio (M, Zi41) > 0, which implies that v(0) > 0 and, as v is a continuous function
of z, that v(z) > x for x small enough; there exists ¢y such that A;, (My, Zy+1) =0,
which implies that

1xz; M"+1
= M“)

v(x) > =2k JAB; (My, Zpi1)z, (A.10)
which is strictly larger than x for 2 small enough; and Vi A;(Mjy, Zr11) < 0 which
implies that v(0) = 0.

Let us then calculate:

n n+1 n n+1 T
(o) =3 B Bl i) SmMET B g
— M |A(My, Ze)l = My wﬂfl‘/f% 1

This implies that:

n+1
M %MM Zazl—l (A.12)
M’Dl

assuring that v(z) > « for = small enough.
As v is a continuous function of z, that v(z) > x for large x and v(x) < z for
small z, there exists at least one fixed point xy > 0 such that v(zg) = zp.

Uniqueness: Suppose that there exist two fixed points of function v, denoted a
and b with 0 < @ < b. As v is concave, for 0 < z < a we have (v(a)—v(x))/(a—z) >
(v(b) —v(a))/(b—a) = 1, meaning that x > v(x) which is in contradiction with the
fact that « < v(z) for = sufficiently small. As a consequence, v cannot have more
than one fixed point. The unique fixed point of v is M ,?j_“ll > (0 and we can deduce,
forl1 <i<n:

. 1
Miyy = 5(Ai(My, Zi1) + \/Af(Mk, Zyy1) + 4Bi(My, Zyo ) M) > 0. (A13)

This proves Proposition 2.1. We now denote ¢ : (R%)"*! x R" x R% — R defined
by:

1 le”‘H

M
i=1

(Ai(M, Z) + \ A2(M. Z) + 4B,(M, Z)a),

(A.14)

where A; and B; are defined respectively in Eqgs. (A.6) and (A.7). ¢ is C*°. Fur-
thermore, we have ¢(M,0, M"*1) = 0 and A;(M,0) = M*(1 — (z; M"+1)/(M'D;))
and B;(M,0) = M'z;/D; according to Eqs. (A.6) and (A.7), which implies that

) iMnJrl
A2(M,0) +4B;(M,0)M"™ T = (Mz (1 + xMT)) : (A.15)
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Hence we find that:

S MY B;(M
gw (M0, M) =1-3"7 i 2 (M,0) _ (A16)

i=1 VAZ(M,0) + 4B;(M,0) M+

z; M"'H
Mn+l
— Zl’l ZJ:,L W (A.18)

oY - T
—(M,0,M" ") = ¥ ————" > 0. A19

As a consequence, if K is a compact set of (Rj)"“, the implicit function theorem
states that there exists ex > 0 and 6,41 which is C*> on K x B(0, ex ) such that:

O(M, Z, 011 (M, Z)) = 0 (A.20)

and then, we deduce, for 1 <i < n,

0:(M, Z) = S(AM, Z) + \[A2(M, 2) + AB.(M, Z2)6,:1(M, 7)) (A21)

and 6; is C* on K x B(0,ex). This concludes the proof for the existence and
smoothness of 6. |

A.2 Proof of Theorem 2.2

Using Lemma A.1 and Cont & Wagalath (2013b, Sec. 6.1), we directly find the
following lemmas:

Lemma A.2. Under the assumption of Theorem 2.2, for all ¢ > 0,7 > 0:

1
li —P(|Myyy — My|| > €| My = M) = 0, A.22
Aim, s R (M1 — M| = e[ My = M) (A.22)
1
lim su —E(Mpy1 — My |My, = M) —b(M)|| =0, A.23
At—>OHMHIiT At ( b k‘ g ) ( )H ( )

lim sup

1
—E[(Mk+1 — Mk)(Mk+1 - Mk)t|Mk = M} - aat(M)H = 07
At=0 | <r

At

where a and b are defined respectively in Fgs. (2.11) and (2.12).

The following lemmas are a direct consequence of the implicit function theorem
and enable to compute a and b explicitely.
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Lemma A.3. Forl1 <I[l,i<n:

06 (M,0) = M Sit + i w (A.25)
) o o Afn+1l iyl 7 n ) .
82[ ]. + I]\Q{D-Fl ! Z;:l % 1 + wl%Dtl
1+W—Dj
00 Ml

8n+1 (M7 O) = n X5 :‘ljwn+1 * (A26)

2 Py ot L+ S
1 kIij

Proof. 0,4 is defined implicitely by (M, Z,0,,41(M, Z)) = 0, where ¢ is given
in Eq. (A.14). The implicit function theorem gives, for 1 <1 < n,
2 (M, 7,0,11(M, 2)
(Ma Z) = G .
5 (M, Z,0,,1(M, Z))

80n+1
8zl

(A.27)

Given the expression for ¢ given in Eq. (A.14), we find that

o —1 g M+ Az(M Z)+2B(M, Z)x
_M7279n M7Z A M,Z
7z #1(M,2)) = 5= | AL 2) + VAZ(M, Z) + ABi(M, Z)x
(A.28)
and
o "L ML B;(M, 7)
M,Z, 6,1(M,Z)) - A.29
B (Vs Zana(M,2) =1 =3 P e P P e (A29)
Using Eqgs. (A.6) and (A.7), we find that
len+1
A2(M, Z) +2By(M, Z)M"™ 1 = (M2 | 1+ : (A.30)
M'D,
Given Eq. (A.15) and the fact that 6,,1(M,0) = M"! we find that
6w _len+1
M,0,0,1(M, e A31
7 (V0002000 = 1 (A31)
MTD,
Using Egs. (A.27), (A.31) and (A.19), we find that
- Mn+1
Pt (11,0) = e e (A.32)
aZl Z]‘:]_ N xjj\/{n-*—l 1+ ?\ﬂDl

Let us now calculate, for 1 < ¢ < nand 1 <1 < n, gz; (M,0). Given the
definition of #;, we remark that:

90,41
90; o 8i1 Bi(M, Z) =52+ (M, Z)
621 (M Z) (M Z 0n+1(M Z))x ]\4n+1 \/A2 +4Bl(M Z)

(A.33)
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which, evaluated in 0 and given the expression for

80iMO M

Lemma A.4. For 1 <jl<n:

829n+1( ) 1
8z.,»8zl T ML

57‘,11‘1

1<p<n 1+

IiJ\r4’L+1
M'D; xZ

Zn Zj x 1 4 zMrtt
7j=1 z; MnFl + “M'D;
MID;

0i1 +

Lp
Z xpMnH1

D, MP

2
2 $an+1
D, M

111\4"+1
L+ "D, MV

2
Mn+1
(1 o )

2z 1

_|_

o M+
(1 + Dy M!

Dy M!
X

<mLM"+

1 n+41 Tp
) (1 + QJJM ) Zlgpgn 1 zpl\l’H’l

D, M7 +

2
rl]\ln#»l
(1 + T

1\ 2 IjMn-H 2
Dj;MJ
+

a; Mn+1 2
<1+ DM )

2z 1

_ YL z; M+t Mn+1 ) 2
(1 + D, M! 1+ Dj;MJ Elgpgn 1t wpMTTT

X
1<p<n (1 +

020,

M.0O Mn+1
8zj8zl( Y )

Mi

e, M+ 1) 2
xp Dy, MP

pr”+1 3
D, MP

Dp MP

2
2 z; J\4n+1
D, MT

=66,

jil 1 2o M1

D

2
Ve g ML
WM (1 + DA

2
z, ML
D; M7

1

+2M° (

(1 + ILM"+1>3 2 1<p<n

il

Lj

Tp
1 zpMNFL
Dp MP

X ’ x; Mt
(1 + 5,57 )
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2 Zj Ty
o M o MTTL o M T L
D, M! =5 D, M!
J
—2M, Y .
x M™ Tp
(1+ D, M7 > (Zlgpgn 71,,Mn+1>
+=p, mr
T; 2
D 990
e M. 0). (A.36)

14 2 020z

Proof. We first calculate for 1 < j,I < n 82 ”:1 (M,0). Deriving Eq. (A.28) with
respect to z; gives the following equation:

8‘3;5/;[ (M, Z,0,11(M,2)) + ;w (M, Z,0p41(M, Z))%;(M,Z)
gai,» (M, Z,0,,41(M, Z)) ag;l* L (M, Z)
g%f(M Z,0n11(M, Z))eazj (M, Z)—= (M,Z)
+ g—w(M Z, 01 (M, Z))Cz)j’é: (M, Z) = 0. (A.37)

Considering Eq. (A.28), we find that if [ # j, then az az (M, Z,0,+1(M,Z)) =0.
Deriving Eq. (A.28) with respect to z;, we find that

2 1M+t 2A2(M, Z) + 2B/(M, Z
aw(MZx) 2 (A 2)+ (M, Z) + 2B0M, 2)
0z} 2 M VA (M, Z)+4B/(M, Z)x
2 2
| (A Z) + 2B, Z))? (A38)
(A? (M, Z) + AB|(M, Z)x)>2
2, M+ B3(M, Z)z*
~ Wiz, 4 2 l (M, Z)z _. (A.39)
0z MY (A2(M,Z) +4ABy(M, Z)x)*>
Evaluating this equation in 0 and using Eqgs. (A.31) and (A.15), we find that
82’(/J len+1 len+1
M,0,M" ™) =¢;,;———— [ [1— —1]. A.40
(92’]821( 70, ) it (1 + a?ﬂ\in+1>3 DlMl ( )
DM
Deriving Eq. (A.28) with respect to x, we find that
2 UM, Z B3(M,Z
OV (rp,7,0) = —29M l( .Z) (M, 2)a - (A1)
0z,0x M (A2(M,Z) 4+ 4ABy(M, Z)z)*2
which, evaluated in 0, gives
9% Mg\ 2 1
M,0,M") = -2 . A42
0z,0x ( ) 1’[( MlDl ) (1 ]W"'le)g ( )
D,
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Differentiating Eq. (A.29) with respect to x, we find that

2 M+l B2 M. Z
0 f(M Zay=2 Y pM.2) — (A.43)
Ox S, MP(A2(M, Z) +4B,(M, Z)x)?
which implies that
oy M1 2
%Y _— 2 Tp ( b, 317 )
o5z (M0, M"™ 1) =~ > — (A.44)

3

1<p<n (1 + W)

Using Eqs. (A.25), (A.26), (A.40), (A.42) and (A.44), the relationship given in
Eq. (A.37) gives Eq. (A.35) of Lemma A.4.

Using Eq. (A.33), we can calculate the second order derivative of §; for 1 < i < n.
For 1 <j 1 <n:
0%0;
020z
o 5zl ( 821/}

—Il]]\{n-H 32’ 82:[

(M, Z,0n11(M, Z))

(M, Z, 601 (M, Z)))

a0,
(M. Z,0n1(M, 2)) =5 (M, Z))
Zj

i1 ( 0%y

Ml

0011 . 2) 2B2(M, Z)0p41 (M, Z)
a7 (A2(M, Z) + AB,(M, 2)6,:1 (M, 2))}

+5i,j

B3 (M, 2) %% (M, 2) 222 (M, Z)
(Af(M, Z)44B;(M, Z)0,11(M, Z))%
Bi(M, Z) 920,11
VAZ(M, Z) + 4B,(M, 2)6,, 11 (M, Z) 02,02
which, for Z = 0, gives Eq. (A.36). O

+ (M, Z),  (A.45)

Define the differential operator G : C§°(R"*1) i C5°(R"*1) by

Gh(z) = % S (aa)is (@)2i05h + > bilw)oh
1<i,j<n i=1

where a and b are defined in Egs. (2.11) and (2.12) respectively. a and b are continous
and Lemmas A.3 and A.4 show that for all z € R™™ |la(z)|| + ||b(z)| < K]|z].
Ethier & Kurtz (1986, Theorem 2.6, Chap. 8) states that the martingale problem for
(G, b5y, w,) is well-posed. So, by Lemma A.2 and Ethier & Kurtz (1986, Theorem 4.2,
Chap. 7), this implies that the process (Stﬁ W |) converges in distribution to
the solution (P, (P}, V;):>0) of the martingale problem for (G, ds, w,) when At — 0.

Furthermore, as a and b are C*°, they are locally Lipschitz and hence, by Ikeda
& Watanabe (1981, Theorem 3.1, Chap. 4), the solution of the martingale problem
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for (G, ds,,w,) is the unique strong solution of the stochastic differential equation
given in Theorem 2.2.

A.3 Proof of Proposition 3.1

We know that
” In P?,In P7] IR
i.j [ ) T ,
C[O,T] = # = T/O C;]dS, (A46)
where ¢, is the derivative of the quadratic covariation and corresponds to the instan-
taneous covariance matrix of asset returns. By direct computation from Theorem

2.2 and Lemma A.3, we find that
Ct = by + E(tI‘t — In)Ft + Ft(Ft — In)E
+ Fy(Ty — I)S('Ty — I, Fy, (A.47)

where F; and I'; are n X n matrices such that F} is diagonal with ith term equal to
-1

- (I)iA. . T T
= T and Iy = L _ A48
b4 A, k 15%:Sn1+<1>f/\p 1+ ®A; (4.48)
with ®! = % This implies that:
0
Co = E+—/ L)Fs + F(Ts — I,,)X)ds

—/ L)X('T, — I,)Fy)ds, (A.49)

where F; and I'; are defined in Eq. (A.48). We study the expression of Cjy 1) given
in Eq. (A.49). Let us start with the term

1 T
1 / (Fy(Ty — I,,))ds. (A.50)
T Jo
We have
-1
APl x Tk
Fs Fs - In ik — — - T Tk
[F5( ik 1+ LA, Z 1+ %A, 1+ ®p(s) A bik

1<p<n
(A.51)
which implies that

T
/ [Fu(T, — 1,)S]; ds

/ > [F(Ts = L))k Tk, jds (A.52)

1<k<n
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- ,
A D!
=— [ — 5.
/0 1+ @A, 44

- _
A; D Zp T

— Y. ids.

+/0 1+ ®iA,; Z 1+ ®LA, 1+ ®p(s)Ay ™ ’

1<k<n \1<p<n

(A.53)

‘We then remark that

T

APl

— %, ;d A®LY; d
/01+<I>1A S / 9

and hence

T i\2
%)
< 2 (@) s/ .
\2”|A/0 e ® (A5

. .
A
/72,@3 /Aqﬂz”ds
0

T
< 2 )2 . .
e |E”\A/ (i)2ds.  (A.55)

Furthermore, we remark that:
-1

T
Tp Tl
E .
/0 1+<I>ZA > | X T+ A, | 1+ ®p(s)As ks

1<k<n \1<p<n

/ M@y D axdeds (A.56)
1<k<n
T —1
n . 1 1 .
< 2 wklZ ] / A i — —1|ds
; "o 14+ QLA; 1+ ®p(s)Ayg 15;9 1+ ®2A,
(A.57)

= LA,
< TSk s 0 .
—; ¢l "*J|/0 (1+ Or(s)Ap) (1 + DLA;)
-1

xp .
S —Z— | = (14 Pr(s)Ar) (1 + LA | ds (A.58)
. 14+ ®%A,

n T
<3 Syl / B A,
k=1 0

X

Tp .
—_— — (14 D (s)Ax)(1 + PLA; A.
X | 0 nem0 s (4.59)
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n T
< Zxk‘zlm‘/ DA,
k=1 0

ds  (A.60)

> L —
« 1<p<n T+oTA,

T i<pen TR
1<p<n 1+®TA,

(I)ngi + (IDk(S)Ak + (I)i;(I)k(s)AiAk + (

n T
< Zxk\zk,ﬂ/ LA
k=1 0

_%pr
Z1§p§n T1arA, Z1§p§n x,,)

X Tp S
Elgpgn I+074A,
(A.61)
n T
Szxk‘zk,g"/ DA,
k=1 0
zp LA,
; Pk Elﬁpﬁn T+3PA
X | PLA; + Pp(s)Ay + PLPANN, — | == ds (A.62)
Zlépén 1+PTA,
< Zxk\zk,ﬂ/ DA,
k=1 0
X QLA + BEA, + QLOEA AL + > @A, > (1 + PPA,)| ds,
1<p<n 1<p<n
(A.63)
where we used that
> a,=1 (A.64)
p=1

and that for strictly positive real numbers (y;)i<i<n, we have the convexity
inequality

n -1 n
x
(Z —p> < Z TpYp- (A.65)
p=1

Given Lemmas A.3 and A.4, we find that, for 1 < i,k < n, a; (P, Vi)/Pf,
an+1.k (P, Vi) / Vi, bi(Pi, Vi) /PP and by41(P, Vi)/ Vi, defined in Egs. (2.11) and
Eq. (2.12), are bounded uniformly in A. As a consequence, by applying Itd’s formula
to (¢(t)")P((t)7)4(a(t)*)" for p,q,r > 0, we find that E((4(t)")P(¢(t)7 ) (4(t)*)") <
K exp(Ct) where C does not depend on A.
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2. and using Eq. (A.55), we find that,

: i
Given that @ = P

/T M —/TAqﬂz- ds + O(|A[]?) (A.66)
0 1+(I)§;Az hJ §= 0 1= s) S ) .

where E(O(||A]|?)/||A]|?) is bounded when A goes to zero.
Similarly, using Eq. (A.63), we find that

T n -1
A; @ Tk
E .
/0 1+ DA, Z (Z T A ) T Ok Ay i S

T n
:/ ADLS S yds + O(IA]]). (A.67)
0 k=1

We then use the same methodology to study the other terms of Cj 7} given in
Eq. (A.49). We conclude this proof by using Ito’s formula and the fact that &} =
®% /b = 1, which gives the relationship

T s i 1T i i
1+/0 (1_T> d(I)S:T/O Bids = ADi (A.68)

which leads to the decomposition of C 0,77 given in Proposition 3.1. The decompo-
sition of Rjg ) follows directly, as Ryl = Cli’ry /(Clo'ry Clip)) 7 -

A.4 Proof of Corollary 3.4

Proof. In our example, the fundamental correlation matrix ]%(0) is such that
[R(0)]is = 1 and []?(O)LJ = p fori # j. As a consequence, it has a simple eigenvalue
v1(0) = 1+ (n — 1)p, associated to the eigenvector 11 (0) = 1/y/n x' (1,...,1), and
an eigenvalue of order n — 1: v, (0) = 1 — p for 2 < k < n, associated to eigenvectors
(¢1(0))2<k<n, which form an orthonormal basis of the hyperplan of R™:

H = {ZE]R" s.t. izizo}. (A.69)

i=1
As the largest eigenvalue of the fundamental correlation matrix, v1(0), is a simple
eigenvalue, we can use Proposition 3.3 to compute the largest eigenvalue and the
first eigenvector of the realized correlation matrix of returns in the presence of
feedback effects.
Given the parameters of our example, we find that for i # j

[VR]:,; = A(1—p)(p+ 1_7”) <2+/0T (1- i) dd;(s) + /OT (1- %) déj(s))
(A.70)

We hence find the expression for v(A) given in Corollary 3.4 by direct computation
of Proposition 3.3.
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Proposition 3.3 states that the first eigenvalue of the realized correlation matrix
of returns in the presence of feedback effects is given by:

n

Y1 =1 + nip > (" VR,) ¥y + o(d) (A.71)

k=2
as v1(0) — v (0) = np for k > 2. Given the fact that (1 )2<k<n is an orthonormal
basis of H = defined in Eq. (A.69), the term

n

> (4, VRY,) ¥y (A.72)

k=2

is the orthogonal projection of VR, on H. Given the equation defining H, this
orthogonal projection py on H is expressed as

12
Zl—ﬁ Zi

1<i<n

pr(z) = : . (A.73)

Finally, as

— 1 - 1—p i j

[VRY, )i = %A(l —p) (p + T) Z (2 + ADL + ADY) (A.74)
J#i

and given the expression for py, we find the expression for ¢, given in Corollary 3.4

O
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