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ABSTRACT

We introduce a quantitative framework to design the capital contribution of a cen-
tral counterparty (CCP) to its default waterfall, known as CCP “skin in the game”
(SITG). We show that, under inadequate SITG levels, nondefaulting members are
more exposed to default losses than CCPs. The resulting risk management incen-
tive distortions could be mitigated by using the proposed framework. Our analy-
sis addresses investor- and member-owned CCPs; we also analyze multilayer and
“monolayer” default waterfalls. The broader central clearing mandate of US Trea-
suries may take place under monolayer CCPs. Viewing the total size of SITG as
the lower bound on CCP regulatory capital, the framework can be used to improve

Corresponding author: S. Ghamami Print ISSN 2049-5404 | Online ISSN 2049-5412
© 2025 Infopro Digital Risk (IP) Limited



2

R. Cont and S. Ghamami

capital regulation of investor-and member-owned CCPs. We also show that bank
capital rules for CCP exposures may underestimate risk.

Keywords: financial regulation; central clearing; over-the-counter markets; the US Treasury
market; risk management; skin in the game.

1 INTRODUCTION

The over-the-counter (OTC) derivatives market reform program launched in 2009
by the Group of Twenty (G20) following the 2007-9 global financial crisis (GFC)
has drastically transformed these markets. Central clearing of standardized OTC
derivatives was one of the main components of this reform program (Ghamami and
Glasserman 2017). The Covid-19 crisis revealed that the secondary market for US
Treasuries can become dysfunctional, in part due to the constraints on the capacity
of dealers that intermediate in this market (Duffie 2020; Duffie ef al 2023). In 2021,
the Group of Thirty (G30) proposed a different reform program to strengthen the
resilience of the US Treasury markets (Group of Thirty 2021). Broadening central
clearing mandates in government securities markets is one of the main elements of
the 2021 reform program.

The main potential benefits of central clearing are well known. It has the potential
to reduce the level of interconnectedness in OTC markets and improve transparency.
Central clearing can help mitigate counterparty credit risk! through multilateral net-
ting (Cont and Kokholm 2014; Duffie and Zhu 2011; Garratt and Zimmerman 2015;
Ghamami and Glasserman 2017), and when multilateral netting efficiencies domi-
nate bilateral netting, the cost of collateral requirements could be reduced.? Central
clearing may also reduce the pressure on intermediaries’ balance sheets (Baranova
et al 2023; Duffie 2020).

"In US Treasury markets, counterparty credit risk materializes mostly in the form of settlement
failures (Ingber 2017). US Treasury market settlement failures rose significantly in March 2020
(Duffie 2020, Figure 13).

2 Multilateral netting outperforms bilateral netting under certain conditions (Cont and Kokholm
2014). For instance, as the number of asset-class-specific central counterparties increases, and
when bilateral netting across an increasing number of asset classes is permitted, bilateral netting
can dominate multilateral netting. The overall netting efficiencies achieved by central clearing
could also depend on specifics of client clearing models. Research on client clearing is scarce
(Committee on Payments and Market Infrastructures—Board of the International Organization of
Securities Commissions 2022; Ghamami et al 2023).
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Skin in the game

Central counterparties (CCPs) require effective governance, regulatory oversight
and highly robust risk management frameworks. Otherwise, increased use of CCPs
may create financial stability risks (Bernanke 2011; Dudley 2014; Tucker 2014).
The failure of a systemically important CCP can be disastrous.> The right design
and regulation of CCPs continue to generate debate among industry participants,
government officials and the public. In 2019 and 2020 major buy-side and sell-side
firms called for regulatory action to make clearing houses safer (JPMorgan Chase
2020). The industry paper included a number of recommendations, one of which was
“requiring CCPs to make material contributions of their own capital to the default
waterfall in two separate tranches”.

CCPs rely on their “default waterfall” to manage the pooled counterparty credit
risk in centrally cleared markets (Cont 2015; Murphy 2017). The typical waterfall
structure is multilayered and consists of collateral posted by clearing members in
the form of risk-sensitive initial margin (IM) and contributions to a quasi-risk-based
default fund (DF), also known as a guarantee fund. CCPs also often make equity
capital contributions to the waterfall. These capital contributions are often referred
to as “skin in the game” (SITG). Currently, the level of SITG held by CCPs is not
risk-based.

When a member defaults, the CCP first uses the “defaulter pays” resources to
cover losses. Potential remaining losses are “mutualized” among the CCP and surviv-
ing members. SITG and surviving members’ DF assets can be used in the loss mutu-
alization process. SITG often comes into play twice: first, right after the defaulter-
pays resources, and subsequently, in a second layer, once the prefunded DF assets
of surviving members are depleted. That is, the second layer of SITG can be used
before surviving members’ unfunded DF contributions.* The first and second layers
of SITG are denoted by S and S in this paper (Section 2).

We also consider so-called “monolayer” default waterfalls, whereby the IM pool
is used for loss mutualization without any additional DF layer (Section 6). Some
systemically important securities CCPs in the United States operate under this struc-
ture. Kuong and Maurin (2023, Proposition 3 and Corollary 1) show that CCP default
waterfalls in their most general and abstract forms may be optimal when the collat-

3 CCPs have failed in the past. The most well-known cases are the failures of the Caisse de Lig-
uidation in Paris in 1974, the Kuala Lumpur Commodity Clearing House in 1983 and the Hong
Kong Futures Guarantee Corporation in 1987. Tucker (2014) highlights the impact of the failure of
the Hong Kong futures clearing house: “Basically, Hong Kong’s securities markets all stopped,
affecting households and firms well beyond the community who had positions in stock-index
futures.”

4When losses cannot be covered by prefunded financial resources, CCPs can often ask the surviv-
ing members to make additional contributions to the DF. These are referred to as “unfunded DF
contributions”.
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eral cost is not too high. Ghamami et al (2021) and Ghamami (2020) show that col-
lateral in the form of IM may increase contagion and financial stability risks. Choi
et al (2021) discuss the status of collateral rehypothecation and its impact on the
global financial system.

As shown in the CCP surveys by Thiruchelvam (2022) and Walker (2023):

e SITG is often a very small fraction of member prefunded resources (for
instance, SITG represents 1% of the DF at the United Kingdom’s largest CCP
for interest rate swaps, the London Clearing House (LCH));

e SITG levels vary widely across CCPs; and

e policy makers do not have a quantitative methodology for evaluating the suffi-
ciency of SITG levels (Murphy 2017).

The goal of the present study is to address these shortcomings by introducing a
sound, transparent and well-founded quantitative framework for determining the
adequate size for a CCP’s SITG; that is, the level of capital contribution to its
default waterfall. Unlike bank regulation, CCP regulation is mostly principles-based
(Ghamami 2015), and capital regulation of CCPs may not correspond to their risk
profiles. Our proposed formulations of SITG can be viewed as risk-based lower
bounds on the minimum CCP capital requirements (Section 5).

Conflicts of interest and agency problems are ubiquitous in OTC markets. They
arise in different forms in centrally cleared markets. When left unmitigated, problems
linked to CCP risk management may have adverse consequences on the CCP’s finan-
cial stability. CCPs can be viewed as counterparty-credit-risk insurance providers.
The classical moral hazard from this perspective is that clearing members may
be incentivized to take on increasing amounts of counterparty credit risk. A well-
designed loss mutualization scheme and adequate collateral requirements could mit-
igate this moral hazard. In the mechanism design approach of Biais et al (2016) and
Bolton and Oehmke (2015), adequate levels of collateral (margin) can mitigate moral
hazards of this type in derivatives markets.

Given default losses can be mutualized among surviving members, CCPs with-
out sufficient SITG may not be incentivized to properly monitor counterparty credit
risk. CCP risk management practices could subsequently become questionable. Well-
designed SITG can mitigate this variation on the moral hazard. This agency prob-
lem can become subtle at member-owned CCPs. Unlike investor-owned CCPs, those
under the ownership structure of a members’ cooperative might be expected to nat-
urally incentivize managers to put in place a robust risk management framework.
This need not be the case, as we argue by drawing on the work of Hart and Moore
(1996) and Hansmann (2013). A member-owned CCP could face collective decision-
making complications that may ultimately lead to insufficient levels of SITG. We
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show that this problem can be exacerbated under CCPs with heterogeneous mem-
bership (Sections 2 and 3). Membership is not homogeneous at large clearinghouses.
Our results can be contrasted with the contract-theoretic work of Huang (2019), in
which a member-owned CCP is modeled as a welfare-maximizing social planner
(ie, a public utility).

Taking the default waterfall as given, we develop an economic framework to ana-
lyze central clearing risk management agency problems and design SITG to mitigate
them. We show that, conditional on a member’s default, when S = 0, surviving
members’ DF assets are more exposed to losses compared with the losses the CCP
could face under member prefunded resources. Quantifying the corresponding loss
probabilities, we introduce incentive compatibility constraints (ICCs) and formulate
SITG to mitigate the risk management moral hazards. In our setting, S, in its simplest
form, is formulated as a percentage of the total DF (denoted by D in this paper).

Consider the CCP’s tail exposure to each member conditional on that member’s
default. Ordering these (tail) loss exposure estimates, we assume for simplicity that
member 1 creates the largest exposure.’ We call the ratio of the CCP’s largest expo-
sure to its aggregate exposures the concentration ratio and denote it by ¢;. We show
that, in its simplest form, when

S=(1-c1)D,

some of the ICCs are satisfied, and the risk management incentives of the CCP and
its members can become more aligned (Section 3.2).

We also show that when S = 0, members’ unfunded DF contributions are more
exposed to losses compared with the CCP loss exposures. This can distort risk man-
agement incentives. The moral hazard can be mitigated by formulating an S that
satisfies a set of incentive compatibility conditions (Section 3.3). As with our for-
mulation of S, we show that S is formulated as a percentage of D. We propose a
quantitative approach for calibrating SITG (Section 4). In our framework the total
SITG, S + S , can be expressed as a fraction of the total DF size. Our numerical
studies in Section 5.1 indicate that for realistic parameters, this leads to SITG levels
above 15%-20% of the total DF size. This in turn leads to estimates of a lower bound
for CCP equity capital in terms of the total DF size.

The largest securities clearinghouses in the United States operate under the mono-
layer default waterfall. We show that monolayer CCPs may need to hold significantly
higher levels of SITG to mitigate risk management agency problems (Section 6).
We can approximate the ratio of the monolayer CCP SITG to the multilayer CCP
SITG under similar ICCs. This ratio can be considered roughly equal to the ratio of

3> We often refer to this member (member 1) as the largest member, or the member to which the
CCP has the largest exposure.
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total IM to the total DF under the multilayer default waterfall. In practice, the IM
is usually at least 10 times the DF (Ghamami and Glasserman 2017). According to
Walker (2023) and Thiruchelvam (2022), monolayer CCPs’ capital contribution to
the default waterfall is less than 1% of member prefunded resources. Our frame-
work indicates that higher levels of SITG may be required to mitigate potential risk
management incentive distortions.

Our findings also have implications for the adequacy of the bank capital require-
ments for exposure to CCPs developed by the Basel Committee on Banking Supervi-
sion (2023). Appendix A6 (online) shows that these CCP risk capital rules could be
improved, as central clearing risks may be underestimated in the current regulatory
regime.

The remainder of the paper is organized as follows. Section 2 reviews the typical
multilayer default waterfall. It shows that CCPs may not be incentivized to allocate
their own capital to the default waterfall. Section 3 develops our basic framework,
which captures the risk management agency problems discussed in the previous sec-
tion and shows they can be mitigated by holding adequate levels of SITG. Section 4
models the tail of the loss distributions with the Pareto distribution and develops a
robust framework for formulating S and S. Section 5 introduces a lower bound for
CCP regulatory capital. Section 6 analyzes the monolayer default waterfall and com-
pares it with the multilayer waterfall. Section 7 states our concluding remarks and
discusses the implications of our investigation.

2 DEFAULT WATERFALL AND CENTRAL COUNTERPARTY
CAPITAL

After providing a brief overview of the default waterfall, we argue that, in the absence
of government regulation, CCPs may not be incentivized to make adequate equity
capital contributions to the default waterfall. We also note that SITG could be viewed
as the minimum CCP regulatory capital requirement.

2.1 Default waterfall

Consider a CCP that clears transactions in an asset class for N clearing members
indexed by i = 1,..., N. We denote by U; the exposure of the CCP to member i
over a given risk horizon, often referred to as the margin period of risk (MPOR). The
exposure Uj is a positive random variable that in part captures member i’s portfolio-
value changes over the MPOR.

Each member i with open positions contributes an IM M; to the CCP. At multi-
layer CCPs, the IM posted by each member may be used only to absorb losses arising
from the member’s portfolio, and it cannot be used to offset other members’ losses
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or other losses incurred by the CCP. We discuss CCPs under the monolayer water-
fall structure in Section 6. Regulatory guidelines require IM to cover the exposure
with a certain confidence level, typically with a minimum of 99% (see Committee on
Payment and Settlement Systems—Technical Committee of the International Organi-
zation of Securities Commissions 2012, Principle 6). We represent M; as a quantile
of U; for some confidence level 1 — g, where g < 0.01.

The (residual) exposure net IM to member i is thus given by (U; — M;)T =
max(U; — M;,0). The magnitude of the CCP’s exposure to member i’s net IM in
extreme but plausible scenarios is often modeled using a risk measure p associated
with the random variable (U; — M;)™ at confidence level 1 — ¢p:

E;i = pgp (Ui — M), 2.1

with gp < ¢. Note that p can be the value-at-risk (VaR), expected shortfall, range
VaR or any other loss-based risk measure (Cont et al 2013). In this paper, unless
mentioned otherwise we use VaR:®

Pap (Ui — M;)T) = VaR,, (Ui — M;) ™).

Each member also contributes to the CCP’s prefunded DF. We denote the con-
tribution of member i to the DF by D;, and the size of the total DF by D,

where
N
D =)D

i=1
Regulatory guidelines require that the DF covers potential losses incurred due to a
given number of member defaults: at least one, and often two for systemically impor-
tant CCPs (see Committee on Payment and Settlement Systems—Technical Commit-
tee of the International Organization of Securities Commissions 2012, Principle 4).”
Denoting by E@ the ith-largest exposure, we have

EW =max(E;, i =1,....N) 2 E®@ > ... 2 E®™) —min(E;, i = 1,...,N).

The “Cover 1-based” DF leads to a prefunded DF given by the size of the CCP’s
largest tail exposure:

D=max(E;,i=1,...,N)=EWD, (2.2)

The Cover 2-based DF is intended to cover the simultaneous default of the two mem-
bers that would jointly create the CCP’s largest (tail) exposure. The Cover 2 DF can

6 This is to simplify the exposition and focus on the main results. It is not difficult to carry out the
analysis when p is taken as the expected shortfall.
7 Systemically important securities CCPs in the United States operate under the Cover 1 DF rule.
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be formulated as®
D=EY 4+ E®, (2.3)

To simplify the exposition, the analysis in the body of the paper mostly focuses
on the Cover 1 DF. Appendix A5 (online) extend our analysis and results to the
more general setting (ie, a Cover n DF; 2 < n < N). Unlike IM, which became
standardized to some extent at derivatives CCPs after the GFC, the modeling and
sizing of the DF and its allocation to members vary considerably across CCPs (Cont
2015; Ghamami 2015; Ghamami and Glasserman 2017). Some derivatives CCPs
allocate the DF to members proportionally to the tail exposures:

E;
Di=D—i" 2.4)

7 .
Zj:l Ej

Intuitively, this seems plausible, as the overall size of the DF depends on the magni-
tude of these exposures. However, other allocation schemes also exist. For instance,
some CCPs allocate the total DF proportional to IM, trading volume, open interest
or a weighted mixture of all these quantities.

The order in which the default waterfall’s financial resources are used to absorb
losses when a member defaults can be summarized as follows.

(1) The first layer of protection against losses is provided by the IM posted by the
defaulting member.

(2) If the loss exceeds the IM contribution of the defaulting member, its prefunded
DF contribution is used to cover any additional losses.

(3) If the loss exceeds the sum of the defaulting member’s IM and DF contribu-
tion, the CCP makes a (capped) contribution to offset the remaining loss. This
contribution is often referred to as the SITG. We denote the size of this first
layer of SITG by S.

(4) The DF contributions of surviving members are used to absorb the poten-
tial remaining losses. These losses can be mutualized and allocated across
members proportional to their contribution D; to the DF.

81t can also be formulated as max{pg,, (U; — M)t + (Uj - M,-)"'); i#j, i,j=1,...,N}
As long as the subadditivity property holds, a Cover 2 DF formulated as (2.3) leads to a more
conservative DF.
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(5) Once the prefunded DF is exhausted, the CCP may use various recovery
mechanisms to restore its funding resources (Cont 2015; Duffie 2015). These
typically include

e an additional capital contribution by the CCP (we denote the size of this
second layer of SITG by S);

e additional DF contributions by surviving members (known as assess-
ments), capped at the level of their prefunded DF contribution; and

e other recovery measures, such as variation margin haircuts.

2.2 CCP capital contribution to the default waterfall

In the absence of SITG regulation, investor-owned CCPs may not be incentivized
to make capital contributions to the default waterfall.’ This can be shown in
different ways.

In what follows we first illustrate the waterfall in a very simple and stylized way.
Conditional on the default of member j, the CCP’s loss up to this stage of the default
waterfall can be written as

L =min{(Uj — M; — D;)*, S} + min{(U; — M; — D — $)*,§}.  (2.5)

CCP revenue is proportional to the volume of cleared transactions. Consider an
investor-owned CCP. Let V' and ¢ denote the CCP’s average clearing volume over a
given period of time and the clearing fee. The CCP’s expected net profit could then
be approximated by

¢V — E[L]. (2.6)

Suppose the CCP maximizes its expected net profits by choosing optimal levels of S
and S. In the absence of capital constraints, the CCP solves this problem by setting
S =0and S = 0. It is clear from the above formulation that the CCP chooses zero
capital contribution.

If regulators require clearinghouses to contribute the minimum regulatory capi-
tal to the default waterfall, CCPs may then be incentivized to adjust their capital
structure and improve their risk management frameworks so as to maximize (2.6)
given the minimum regulator-enforced S > 0 and S > 0. For instance, suppose
V is a decreasing function of the IM. That is, all else being equal, margin levels

®We consider two broad classes of ownership structure: outside ownership (which is the most
common); and members’ cooperatives. These are referred to as investor- and member-owned (or
user-owned) CCPs, respectively. It can be illuminating to view these as capital and consumer
cooperatives (Hansmann 2013).
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above a regulatory minimum reduce the volume of trades the CCP can attract. Then,
given regulator-driven S > 0 and S > 0, the profit maximization problem would be
solved by, for example, choosing optimal levels of IM, S and S above the regulatory
minimum.

2.2.1 CCP objective function

The approximate net profit formulation (2.6) abstracts away the total level of CCP
capital, costs associated with it and the cost of a CCP failure. We now sketch
the augmented objective function of an investor-owned CCP in the presence of
these costs.

Consider the case of a single representative CCP. Given the typical multilayer
default waterfall, suppose that E; = S + S + E, is the capital of the investor-owned
CCP, where Ej is the portion of the CCP capital not allocated to the default waterfall.
We also assume the unfunded DF is capped by a multiple of the prefunded DF, 8D,
with 8 > 0. Conditional on the default of member j, consider the loss to the CCP in
excess of member resources and the CCP’s total capital:

Le=(Uj—M; —D—B(D—-Dj;)—E)". .7

In the presence of E; > 0 and conditional on the default of member j, the private
profit-seeking objective of an investor-owned CCP would be to maximize

¢V — E[L] — E[L] — ¢(E) — ¢,O(S. S, Ey), (2.8)

where the first two terms come from (2.6); c¢(E,) is the social cost of CCP capital,
with ¢(-) being an increasing convex function; ¢, is the private cost of a CCP failure;
and Q(S, S, E,) is the probability of such a failure, with Q(-) being a multivariate
decreasing convex function. A basic and standard assumption in this paper is that
CCP failures are costly for society. We assume that in the absence of capital require-
ments, CCPs do not fully internalize the costs of their own failures. That is, the
social cost of a CCP failure, c;, is larger than the private cost ¢p,. A second basic and
standard assumption is that there is a social cost associated with having more CCP
capital, and that the capital structure irrelevance principle (Modigliani and Miller
1958) fails for CCPs.!°

10 Greenwood et al (2017) use similar assumptions to formulate the cost of capital and bank failure
in their setting. As in their study, the only cost of equity that is incorporated in the objective func-
tion (2.8) is the one associated with the stock of equity on the balance sheet. Under the simplifying
assumption that the private costs of equity finance equal the social costs, Greenwood et al show
that risk-based bank capital regulation can be optimal (in a steady state). We do not need to devi-
ate from this simplifying assumption to show that, in the absence of SITG regulation, CCP equity
capital levels can be socially suboptimal.
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Now, suppose that E, is given (eg, set by regulators) but its allocation to S, S and
E is left to the CCP. Then, it is not difficult to see that the CCP maximizes its objec-
tive by setting S = S = 0. That is, it does not allocate its own equity capital to the
default waterfall. While the augmented objective function (2.8) is more comprehen-
sive than the stylized net profit formulation (2.6), to see that investor-owned CCPs
may not be incentivized to have any SITG, it suffices to focus on the simpler formu-
lation (2.6). In the absence of SITG regulation, policy makers may underestimate the
probability of CCP failure and so the corresponding social costs of such a failure.
In what follows we show that, when § = S = 0, CCP risk management incentives
can be distorted. This suggests that adequate levels of SITG can improve CCP risk
management and subsequently decrease the CCP’s default probability. The following
example may be illuminating.

Suppose the true default probability of the CCP is represented by the logistic
distribution function

s S S E,
0(S.5.E,) = exp(§o + 415 + &2 + $3Ey) ’
1 +exp(8o + 618 + 58S + (3ES)
where §; < 0,71 =0, 1,2, 3. In the absence of SITG regulation, the regulator (ie, the

social planner) may obtain suboptimal levels of CCP equity capital by maximizing
the following objective function:

(2.9

¢V — E[L] — E[Le] — c(E) — ¢, Q(Ey), (2.10)
where, instead of the CCP’s true default probability function (2.9), the following
inaccurate estimate of it is used:

A ex +mEy)
O(E) = Pt mE)
1+ exp(ino + m E)

(2.11)
with ng, 71 < 0.

2.2.2 Qutside ownership versus members’ cooperatives

It is well known that some clearinghouses are member-owned (or user-owned), such
as the Options Clearing Corporation and subsidiaries of the Depository Trust and
Clearing Corporation in the United States, and the Japanese Securities Clearing
Corporation. Member-owned CCPs are often treated as public utilities or welfare-
maximizing social planners in the existing contract-theoretic or mechanism design
models of central clearing (see, for example, Huang 2019, Section 5).!' Since
member-owned CCPs are owned not by individuals but by other profit-seeking

"' More generally, CCPs have sometimes been modeled as public utilities (see, for example, Biais
et al 2016, p. 1677).
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firms, economic analysis of this class of CCPs under the assumption they are
welfare-maximizing public utilities may not have fruitful policy applications.

While the governance and ownership structures of CCPs are beyond the scope of
this paper, we draw on the important work of Hart and Moore (1996) and Hans-
mann (2013). Their analyses of cooperatives, using different approaches, illustrate
the importance of a “control-based” view of ownership and note that effective gov-
ernance of a members’ cooperative could be challenging and the cost of collective
decision-making could be rather high under this ownership structure. They show
that outside ownership can be more efficient than a members’ cooperative when the
membership becomes less homogeneous. Membership is not homogeneous by any
measure at systemically important CCPs.

Member-owned CCPs in advanced economies are large businesses run by man-
agers. Exerting effective control over management can be particularly difficult at a
members’ cooperative. We argue that SITG should be regulated at member-owned
CCPs. Otherwise, risk management agency problems may adversely impact financial
stability. In the absence of effective capital regulation, member-owned CCPs may
allocate insufficient levels of SITG to the default waterfall due to collective decision-
making complications and membership heterogeneity, and the fact that CCP equity
capital could be more costly than collateral in the form of member DF contributions.
In Section 3 we sketch the objective function of member-owned CCPs in compari-
son with (2.6) and illustrate that, unlike investor-owned CCPs, member-owned CCPs
may have the incentive to allocate some level of SITG to the default waterfall. We
also show how membership heterogeneity may lead to insufficient SITG levels.

2.2.3 CCP capital regulation

Principles 2, 4 and 15 of the Principles for Financial Market Infrastructures out-
line minimum regulatory capital requirements for CCPs and indicate that parts of
CCPs’ own financial resources should be allocated to the default waterfall (Commit-
tee on Payments and Market Infrastructures—Board of the International Organization
of Securities Commissions 2017; Committee on Payment and Settlement Systems—
Technical Committee of the International Organization of Securities Commissions
2012). Regulators and CCPs are then expected to specify the form and size of total
regulatory capital and the amount that should be allocated to the default waterfall. In
Europe, for instance, CCP capital requirements are the sum of four components: cap-
ital requirements for winding-down or restructuring activities; capital requirements
for operational and legal risk; capital requirements for credit, counterparty and mar-
ket risk;'? and capital requirements for business risk (European Union 2013a). The

12 This component of CCP capital requirements in Europe is formulated using Basel Committee on
Banking Supervision rules for credit, counterparty and market risk capital requirements.
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European Market Infrastructure Regulation (EMIR) then requires CCPs to allocate
25% of the total regulatory capital to the default waterfall (European Union 2013b;
McLaughlin 2018). Under our proposed framework, S 4 S can be viewed as a lower
bound for CCP regulatory capital. It can also be directly compared with EMIR’s 25%
rule.

3 DEFAULT LOSSES AND SKIN IN THE GAME

In this section we compare default losses from the perspectives of the CCP and
members and illustrate that the CCP and members are disproportionately exposed
to default losses. The underlying economic argument is that when SITG is designed
to lower the potential DF asset losses to members, risk management incentive
distortions can be mitigated.

3.1 Member perspective

Consider the exposure of a surviving member to the default of another member. If
member j defaults, the potential loss of DF assets of a nondefaulting member i # j
is given by

D;
(U —M; —D;j —S)" x (D_Dj) : (3.1

loss allocated to the remaining DF
fraction allocated to member i

If we limit member i ’s DF losses to its prefunded DF contributions, D;, the resulting
exposure of member i due to the default of member j becomes

(3.2)

: Uj—M; —D; —S)*
L{:Dimin((’ . ),1).

D —D;

Note that the ratio L{ /D; (ie, the relative loss of DF assets) is the same for all
nondefaulting members and depends only on the severity of the default event and on
the DF allocation rule. Surviving members incur losses if the defaulting member’s
loss exceeds its IM, its DF and the first layer of SITG. That is,

L/ >0 < U, >M; +D; + 5. (3.3)

1

This result holds regardless of the rules used for sizing the DF and for its allocation
across members.

We now consider the case of DF contributions being allocated proportional to tail
exposures net IM, as in (2.4). Given (3.3), nondefaulting members will incur losses
if

U i > M i+ DL + S.

N
Zk=1 Ey
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In the Cover 1 case, where D = F (1), this inequality becomes
Uj>Mj+EjN—+S, (3.4)

where E; is defined in (2.1). The right-hand side of (3.4) involves what we refer to

as the concentration ratio,
E®

lecv=1 Ey ’
which measures the relative magnitude of the CCP’s largest exposure. As will be
further discussed below, this ratio can play an important role in the risk analysis of
the default waterfall. Since ¢; < 1, in the absence of any CCP capital contribution
the probability that nondefaulting members take a loss is always larger than gp:

1 (3.5)

E:
P(Uj > M, +DN—’E) = P(U; > Mj + Ej) = qp.
k=1 Tk

Note that this is the case regardless of the magnitude of the default. In short, setting
S = 0 gives

P(L! > 0) = gp. (3.6)
where i # j.13

3.2 Skin in the game: first layer

Conditional on the default of member j, when S = 0 the potential loss to the CCP
in the presence of IM and a prefunded DF is

L) =U; —M; —D)".
We can write'
P(L} > 0) < gp. (3.7)

To simplify the notation, we assume hereafter that member 1 (N) is the member to
which the CCP has the largest (smallest) exposure; that is, E W= F, (E N) = E N).
Under the Cover 1 rule, we have

P(L§ > 0) = qp.

B3 If quantified, measured and monitored appropriately, loss probabilities associated with members’
DF contributions can be used to construct credit ratings for CCPs’ DFs.
14 We use a subscript 0 in L to represent losses from the perspective of the CCP.
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We note that in the absence of any CCP capital contributions, nondefaulting members
are more likely than the CCP to incur default losses:

P(L] >0)=qp = P(L} > 0). (3.8)

This inequality captures an important conflict of interest between the CCP and mem-
bers from a risk management perspective: in the absence of SITG, (nondefaulting)
members are more exposed to default losses than the CCP. This moral hazard could
be mitigated by reducing the loss probabilities associated with the prefunded DF
assets of nondefaulting members. More specifically, we formulate S such that the
following ICC is satisfied:

P(L] > 0) < qp. (3.9)

To further elaborate on the incentive compatibility aspect of this constraint, consider
two scenarios. In Scenario A we set

SL=(1—-c1)D. (3.10)
Letcy = EN/(ZIN=1 E;). In Scenario B we have
Su=0—-cn)D. (3.11)

Note that S < Syascy < cy.

SCENARIO A Conditional on the default of member 1, consider loss probabilities
from the perspectives of member i and the CCP. Note that, given

P(L} >0)=P(U,—M, >Dy+S) and P(L§>0)= P(U, —M; > D),
setting S = D — Dy = (1 —c1)D gives
P(L} >0)=P(L} > 0) =qp. (3.12)

That is, under (3.10) large counterparty default loss probabilities become perfectly
aligned from the CCP and member perspectives. Moreover, we will show in Sec-
tion 4 that under our framework, which is based on extreme value theory (EVT),
the loss probability gp in this scenario becomes an upper bound on member loss
probabilities: '

P(L! > 0) < gp.

15 In Section 4 we argue that the proposed EVT-based framework is the natural one to be considered
for the design of SITG. It is intuitive economically and financially to model the tail of (conditional)
loss distributions with the Pareto distribution.
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While CCP and member risk incentives are fully aligned under the largest counter-
party’s default losses in Scenario A, nondefaulting members are more exposed to
other (remaining) counterparties’ default losses than the CCP:

P(L! >0)=P(L)>0), j#1,. (3.13)

We will return to this inequality shortly.

SCENARIO B When Sy = (1 — ¢y) D, the following inequality holds:
P(L] >0) = P(U; = M; > D + D; = Dy) < 4p. (3.14)

as D;j = Dy. Thatis, the overarching ICC (3.9) is satisfied. Moreover, under (3.11),
we can write

P(L] > 0) < P(L} > 0) (3.15)

for all j # i. That is, under Sy nondefaulting members are all less exposed to
counterparty default losses than the CCP. In short, [S., Sy] provides a range of values
for the first layer of SITG whereby the moral hazard problem can be mitigated to
different, quantifiable degrees. When policy makers aim to regulate the minimum
equity capital, S, could be a natural choice for SITG.

REMARK 3.1  That the CCP has low exposure to default losses,
P(L)>0)<qp <q,

relies on the assumption that the DF has been sized adequately. These loss probabil-
ities need not remain small if the DF does not capture client clearing risks properly.
For instance, if in estimating the DF the CCP’s exposure to member 1 conditional
on its default, U, does not take into account the portfolios member 1 has cleared
through the CCP on behalf of its customers, P(L(l, > 0) could exceed gp and q.
Suppose member 1 defaults and its IM covers losses associated with its house (pro-
prietary) account. Over the period of time until client accounts can be ported to a
nondefaulting member, the CCP may need to make payments to member 1’s cus-
tomers. If the DF is not sized properly to cover losses that could arise due to mem-
ber 1’s default (or the default of some of its customers), the resilience of the CCP
can be adversely impacted. This would all depend on the specifics of client clearing
models, an important topic that is not addressed in this paper. The default waterfall
should evolve proportionally to the risk profile of the CCP. Increased client clearing
should increase IM, the DF and SITG adequately.
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3.3 Skin in the game: second layer

The second layer of SITG could be viewed as a buffer against potential losses in
members’ unfunded DF assets. From the perspective of nondefaulting member i
and conditional on the default of member j, the total loss in terms of member i’s
prefunded and unfunded DF assets can be represented by

D;
D-D;

LI=L] +WUj—M;—s-D-5)* (3.16)
When the unfunded DF assets are capped by D; (or a multiple of D;, denoted by
BD;; B > 0), the second term on the right-hand side above is replaced with the
minimum between it and D; (or BD;). Given (3.16), the probability that potential
losses to member i exceed its prefunded DF assets is given by

P(L] > D))= P(Uj—M; >D +S +5). (3.17)

This is the likelihood that member i’s unfunded DF resources would come into play
due to the default of member j. This probability is bounded above by gp when
Jj # 1 or when S or S is positive. Note that, when § = S =0, the probability
that the DF of member i is depleted due to the default of the largest member is equal
togp:

P(L} > D;) = qp. (3.18)

Given S > 0, we formulate S to lower the likelihood that members’ losses exceed
their prefunded DF contributions. More specifically, consider a target loss probability
(ie, an upper bound) associated with unfunded DF contributions, 77, where 0 < 7 <
gp- Given S > 0, we specify S such that the following constraint is satisfied:

P(L] > D)) <7. (3.19)

In short, under the most basic form of the incentive compatibility framework, S and
S can be formulated such that loss probabilities satisfy ICCs (3.9) and (3.19). We
now demonstrate that (3.19) is grounded on economic arguments similar to those in
the previous section. More specifically, taking the CCP’s perspective, conditional on
the default of member j, when S = 0 the potential loss to the CCP in excess of S
and all prefunded and unfunded resources is

L} =@Uj—M; —D—-S—8(D-D)*. (3.20)
Given S > 0, note that when S = 0 we have

P(L] > D;) > P(L} > 0) (3.21)
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forany j # i.This inequality captures another important conflict of interest between
the CCP and its members: in the absence of the second-layer SITG, members’ poten-
tial losses in excess of their prefunded DF assets could be larger than the compara-
ble potential loss to the CCP. The target loss probability 7 will be chosen such that
ICC (3.19) would mitigate this moral hazard. To elaborate on this second overarching
and basic ICC, it will be illuminating to consider two scenarios. First, in Scenario A,
we set

Sp = BD(1 —¢y). (3.22)
In Scenario B the second-layer SITG is formulated as follows:
Su = BD(1 —cn). (3.23)

Note that Sy < S’U.
SCENARIO A Suppose that 7 = P(Z,(l) > 0). Given S > 0, setting S = SD(1 —
¢1) results in

P(L! >D;))=P(L)>0)=PU, —M, >D+S +B(D—D;y)). (324

In other words, under (3.22) the CCP’s and members’ risk management incentives
become fully aligned in terms of the potential largest-counterparty default losses that
would exceed the prefunded resources and the first-layer SITG. As will be shown in
Section 4, under our EVT (Pareto)-based framework,

P(L] > D)) < P(L} > D)) (3.25)

for j # i # 1. Consequently, under (3.22) the explicit ICC (3.24) along with the
above EVT-driven inequality gives (3.19). However, we note that in Scenario A we
have

P(L] > D;) = P(L} > 0) (3.26)

for any j # i.In other words, while S = BD(1 — ¢;) mitigates the moral hazard
associated with unfunded DF asset losses to some extent, members remain more
exposed than the CCP to counterparty default losses that would exceed prefunded
resources and the first-layer SITG. We will return to inequality (3.26) shortly.

SCENARIO B Suppose that S > 0 is given. Since cy < ¢y, setting Sy = SD(1 —
cN) gives

P(L] > D;) < P(L} > 0) (3.27)
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for any j # i. It is useful to note that under (3.23) we have
P(LY > D;) = P(LY >0)= P(Uy — My > D + S + B(D — Dy)).

That is, under the more restrictive second-layer SITG (3.23), members become less
likely than the CCP to incur counterparty default losses that would exceed their
unfunded resources and the first-layer SITG. Here, the target loss probability upper
bound associated with ICC (3.19) could continue to be viewed as 7 = P(Z,é > 0).
That is, in this scenario both (3.19) and the more explicit and restrictive ICC (3.27)
are satisfied. In sum, the second-layer SITG that belongs to the range [§L, SU]
can mitigate this variation of the moral hazard linked to the CCP’s and members’
tail risk management incentives to different quantifiable degrees. Given the regu-
latory focus on minimum equity capital requirements, policy makers could adopt
and appropriately calibrate Sy as an economically sound choice for the second layer
of SITG.

3.4 Member-owned CCPs

Exerting control on managers could be difficult at member-owned CCPs, in part
due to collective-decision-making complications. This agency problem can be exac-
erbated under membership heterogeneity. Member-owned clearinghouses may have
the incentive to allocate some levels of equity capital to the default waterfall. How-
ever, unregulated SITG levels may be insufficient and may in turn adversely impact
risk management incentives.

Recall the expected net profit formulation (2.6) at investor-owned CCPs. We now
introduce a variation of it that corresponds to member-owned CCPs. Suppose that
Y; V; represents member i’s gross profit from its trades in a volume of V; that have
been cleared through the CCP. For simplicity, we assume that V = V; + V, 4 --- +
Vn.'% Again for simplicity, suppose that all members receive an equal share of the
CCP’s profit. Then, conditional on the default of member j, member i’s expected
net profit can be written as

¢V —EI[L]
N —1
where the second term inside the parentheses can be viewed as member i’s “con-

sumer surplus” in the sense of Hart and Moore (1996).!7 Note that I:{ is the total loss
in terms of member i ’s prefunded and unfunded DF assets defined in (3.16). Taking

+ (Vi — E[L])),

16 Note that ZIN=1 ¥; need not be equal to ¢ as the fee structure at the CCP can be different from
each member’s profit-generating schemes from its trading activities.

17 In any market, the total surplus can be viewed as the sum of the total producer surplus and the
total consumer surplus (see Hart and Moore 1996, Section VII).
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the typical multilayer default waterfall as given, member ; maximizes expected net
profit by choosing optimal levels of S and S:
oV E[L] > j
— iVi— | ——+ E[L{] ). 3.28
Consequently, the expected net profit of the member-owned CCP conditional on the
default of member j becomes

(¢+Z¢,~)V— (E[L] +ZE[Z{]). (3.29)
i#j i#j

These simple formulations highlight the basic fact that, unlike investor-owned CCPs,
member-owned CCPs may not be incentivized to set S = S = 0.'8 To see this,
consider expected losses in (3.28), and note that CCP managers’ expected loss E[L]
can be viewed as an increasing function of S and S, while member i’s expected loss
E [I:l] ] can be viewed as a decreasing function of S and S.Soan optimal first- and
second-layer SITG could be positive.'”

Member and CCP expected net profit functions highlight the adverse impact
of membership heterogeneity on SITG levels. To see this, consider the member
expected net profit function (3.28). It then suffices to note that Z,lj and thus £ [le ]
can be viewed as increasing functions of D;. In other words, since larger mem-
bers contribute more to the DF, their optimal levels of SITG can be larger than that
of smaller members. Larger members would vote for higher levels of SITG, while
smaller members would vote for lower SITG levels. In a heterogeneous member-
owned CCP, reaching a consensus on an optimal level of SITG can be particularly
challenging, as members with different levels of DF assets would vote for different
levels of SITG.?°

While conflicts of interest and agency problems in investor- and member-owned
CCPs are not identical, the outcome could be similar: clearinghouses with socially
suboptimal levels of SITG and CCP capital. This is particularly the case for
systemically important CCPs that are also exposed to the too-big-to-fail problem.

We note that our SITG design framework directly applies to member-owned
CCPs. For instance, consider inequality (3.8), which highlights the conflict of inter-
est between the investor-owned CCP and its members from the risk management

18 We can also easily see from (3.29) that modeling member-owned CCPs as welfare-maximizing
social planners may not prove useful.

19 The empirical results of Huang (2019) confirm that member-owned CCPs hold higher levels
of SITG than investor-owned CCPs (see Figure 6 of Huang (2019), which uses 2015 quantitative
disclosure data from CCPs).

20 Note that control in the form of voting rights may be allocated according to a simple one-
member-one-vote rule.
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perspective. At the member-owned CCP, similarly, when S = 0, members are more
exposed to default losses than the CCP, ie,

P(L] >0)=qp = P(L] > 0),

and this could disincentivize managers from adequately monitoring and manag-
ing concentrated risks at clearinghouses. Collective decisions-making problems and
membership heterogeneity in the absence of governmental SITG regulation may lead
to insufficient levels of SITG. Formulating S such that ICC (3.9) or (3.15) is satis-
fied could mitigate risk management incentive distortions and may also improve the
collective decision-making process under this ownership structure.

REMARK 3.2  While the net profit formulations (3.28) and (3.29) abstract away
the costs of CCP equity capital and CCP default, our results remain the same when
these costs are incorporated into augmented objective functions. Recall the objective
function of an investor-owned CCP (2.8). Given (3.28) under a members’ cooperative
ownership structure, the augmented objective function of member i conditional on
the default of member j can be approximated by

Vv

E[L] + E[Lc] 4 ¢™(E) + cMQ™(S. S Ey)
N -1

+ E[L] ]),
(3.30)

where L. is defined in (2.7); ¢™(E,) is the social cost of the CCP capital under a
members’ cooperative ownership structure, with ¢™(-) being an increasing convex
function; c[f)“ is the private cost of the CCP’s default; and Q™ (S, S , E) is the CCP
default probability, with Q™ (-) being a multivariate decreasing convex function. Sup-
pose that E| is set by the regulators, and that, given E;, member i maximizes (3.30)
by allocating the total capital to S, S and E,. As discussed above, since E [I:lj ]isa
decreasing function of S and S, the optimal SITG level from the perspective of mem-
ber i could be positive. However, SITG and total CCP capital levels may be socially
suboptimal in the absence of governmental SITG regulation because, first, CCP and
members do not fully internalize the cost of CCP failure, and second, under mem-
bership heterogeneity, different members could arrive at different (privately) optimal
SITG levels, and this could lead to socially suboptimal SITG levels at the CCP. Our
analysis suggests that SITG regulation may be required to effectively address risk
management agency problems under this ownership structure.

4 A QUANTITATIVE FRAMEWORK FOR SKIN IN THE GAME

We use a flexible semiparametric approach to model the tail risk associated with
default losses. This section introduces our framework in its most general form.
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The proposed SITG formulations can mitigate risk management agency problems
to different measurable degrees.

4.1 Modeling tail risk

Default losses often arise during extreme and distressed market conditions. To ana-
lyze the distribution of these losses, it is natural to model the tails of the loss distri-
butions associated with CCP-member portfolios. A flexible and powerful semipara-
metric approach for modeling these distribution tails is to use the generalized Pareto
distribution (GPD) (McNeil et al 2015, Chapter 7, Theorem 7.20). It is well known
that the GPD becomes an ordinary Pareto distribution in the heavy tailed scenario,
the case used in our study.

More specifically, we use the “threshold exceedances” approach to model the tail
of the loss distribution (see Embrechts et al 1997; Tsay 2010).2! We represent the
conditional distribution of losses in excess of a high threshold as a Pareto distribution,
whose tail exponent or shape parameter « > 1 quantifies the heaviness of the tail.
The natural threshold in our setting is IM. We thus assume that default exposures
in excess of IM have a Pareto or power-law distribution. Specifically, the following
assumption is used to derive our S and S formulations.??

ASSUMPTION 4.1 (Pareto tail) The CCP’s exposure to member i conditional on
its default, U;, satisfies

Ki + X

-
P(Ui—Mi>x|UiZMi):( ) =1-F(x;ki,a), 4.1)

i

where M; = VaR,(U;), and where

—
F(x;k,a) =1— (K+x)
K

is the Pareto distribution with tail exponent (shape parameter) o« > 1 and scale

parameter k > 0.3

It is important to note that we are not assuming a parametric form for the entire
loss distribution but only for tail events with a probability less than g (ie, for losses
beyond IM). This assumption is consistent with risk models used by more advanced
and sophisticated CCPs and is satisfied with high accuracy for many heavy-tailed
distributions, such as a Student ¢, whose tails behave as (4.1) for high thresholds.

2! The threshold exceedances approach is also referred to as peak-over-threshold (POT).

22 Theorem 7.20 of McNeil ef al (2015, p. 278) illustrates that “GPD is the canonical distribution
for modeling excess losses over high thresholds”.

23 As discussed above, it is often the case that ¢ < 0.01 in risk management applications.
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Heavier tails correspond to lower values of the tail exponent «. Empirical studies
indicate that this assumption is plausible for different asset classes, such as equity and
credit portfolios, with « in the range 2—4 for equity (Cont 2001) and credit default
swap (CDS) portfolios (Cont and Kan 2011). Higher values of the tail exponent
correspond to equity and CDS indexes. Recall that

E; = VaR,, (Ui — Mj)™),

where gp < ¢ < 0.01. Assuming that DF is allocated according to E; as in (2.4),
we can write

ki+ Ei\®
P(Ui_Mi>Ei)ZCID=qP(Ui_Mi>Ei|Ui>Mi)ZQ(l l) ,

ki
where the last equality follows from Assumption 4.1. This gives
v = YaRg, (Ui — M;)*)
" p/pVe -1

This expression for k; shows that the scale parameter (x;) is proportional to the mag-
nitude of losses in excess of IM. In what follows we assume that default loss distri-

4.2)

butions satisfy Assumption 4.1 with some tail exponent « and a scale parameter «;
that may vary across members. Note that (4.2) and E; = VaR,, ((U; — M;)™) imply
E i N Kj (4 3)
N - N :
> j=1 E; > j=1Kj
for any 0 < gp < 1. We represent this ratio by ¢;. We will return to concentration
ratio c; shortly.

REMARK 4.2 Let aiz denote the variance of U;. Following Lemma A2 in the
online appendix, if we assume that U;/o; ~ T(0,v) has a mean-zero Student ¢
distribution with v > 1 degrees of freedom, we will have

M; E; Ki

N - N — N :
=My YL B Yk
That is, when default exposure distributions over the MPOR are modeled by Stu-
dent ¢ distributions, the total DF can be allocated equivalently to members using E;

or M;. The concentration ratio can also be approximated based on the IM. We will
revisit this assumption in Section 6.

4.2 Skin in the game: first layer

We continue to assume that the CCP has its largest (smallest) exposure to member 1
(N). The following proposition gives the conditional probability distribution of the
largest-counterparty default loss Li1 to member i # 1.
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PROPOSITION 4.3 Under Assumption 4.1 the probability distribution function of
member i’s loss conditional on the default of the member to which the CCP has the
largest exposure is given by

1/a —a
1 _ 4\ _ .S (d-c)x
Pl > x) = q[l " ((qn) 1)(61 MR D)] S

As illustrated above, in the absence of any distributional assumptions, when S = 0
we have P(L! > 0) = gp and P(L} > D;) = gqp, which can be easily con-
firmed in the Pareto-based formulation. Working backward, we can compute the S
that corresponds to a given target loss probability & > 0. For instance, suppose that
T=P (Li1 > 0). Solving for S yields that

1/a
P(L}I>0) =7 < §= (M—CI)D. (4.5)
(¢/ap)'/* -1

Our basic overarching objective in formulating S is to lower loss probabilities asso-
ciated with member DF assets so as to achieve ICC (3.9). Setting 7 < ¢gp satisfies
this criterion, as will be shown shortly. Before doing so, we revisit Scenario A in the
previous section, where aligning member and CCP largest-counterparty default loss
probabilities is achieved by choosing S such that 7 becomes equal to P(L{ > 0) =
gp- Choosing 7 = ¢gp simplifies the above equation to (3.10),

SL = (1 _CI)D7

which is the formulation we derived above without making any distributional
assumptions. When § is sized according to (3.10), in the event of the default of
the largest member, the probability that any surviving member incurs any losses will
be ¢p. In short, setting S = (1 — c1) D gives (3.12).

4.2.1 Concentration ratio and the DF

It is useful to highlight the nonlinear dependence of S¢ = (1 — ¢;)D on the DF
and subsequent implications for the concentration ratio. Suppose that gp € (0, g) is
given. Viewing Sy as a function of E1 = VaRy,, (U; — M;)™), we have

Ey
SL= l—ﬁ El,

i=1

and it is straightforward to see that £; = E/2 (with E = ZzN=1 E;) maximizes
Sr. That is, a CCP with a concentration ratio of 0.5 would need to have the max-
imum level of S = E/4 to satisfy ICCs (3.9) and (3.12). As the concentration
ratio increases, the size of the DF increases, and so SITG will be sized based on
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lower percentages of the DF. Lower levels of ¢, lead to smaller DFs, and so SITG
will be specified based on higher portions of the DF. For instance, ¢c; = 0.8 gives
Sy = 0.2D, while ¢; = 0.2 gives S = 0.8D. Now, suppose that c; is fixed and
view S as a function of D. Note that, with a given ¢y, the DF is a decreasing func-
tion of gp. Lower ¢gp lead to larger DFs, and as D increases, the size of S will
increase to ensure that member default loss probabilities are aligned with those of
the CCP; that is, to ensure that ICCs (3.9) and (3.12) are satisfied.

4.3 Exposure to other defaults
Proposition 4.4 gives the probability distribution function of L{ , the loss to surviving
member i in terms of DF assets conditional on the default of member j # 1.

PROPOSITION 4.4 Under Assumption 4.1 the probability distribution function of
member i’s loss conditional on the default of j # i is given by

) 1/a o —a
P(L] >x)=q|:l—|— ((i) —1)(c1 +i+iu)} . (46)
4D E; Ej ¢

It follows from Propositions 4.3 and 4.4 that the highest level of tail risk corre-
sponds to the default of member 1 with the highest stress loss over the margin:
P(L! > x) < P(L} > x)

for any j # i # 1. That is, the largest DF exposure of members also corresponds
to the largest exposure of the CCP. By contrast, if S = 0, then under Proposition 4.4
all members have the same loss probability regardless of the defaulter:

P(L! >0)=P(L} >0)=¢gp.

Using Propositions 4.3 and 4.4, it is not difficult to see that setting S, = (1 —c1)D
results in the following bound for member loss probabilities:

P(L) >0)< P(L! >0) <gp.

This shows that our formulation of S in Scenario A reduces the loss probabilities
associated with member DF contributions and also aligns member and CCP large
loss probabilities, in that (3.9) and (3.12) are guaranteed to hold.

Now, consider SITG in Scenario B. Recall that, under Sy = D(1—cy), ICCs (3.9)
and (3.15) are satisfied:

P(L! > 0)< P(L} > 0) < ¢p.

It is straightforward to use Proposition 4.4 to quantify the difference between loss
probabilities under Sy and Sy.**

241n the context of CCP equity capital regulation, when regulatory SITG is viewed as the minimum
amount of equity capital, policy makers could consider Sy, instead of Sy.
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4.4 Skin in the game: second layer

In the design and analysis of S we use the following proposition, which gives our
Pareto-based formulation of member and CCP loss probabilities ((3.17) and (3.21))
discussed in Section 3.2

PROPOSITION 4.5  Under Assumption 4.1, and given S, S > 0, the probability
that member i’s loss conditional on the default of j # i exceeds its prefunded DF
resources is given by

. 1/a D S S —a
P(i/ > D) =q|1 i) —1) (— 2 —)} . 47
(L = Do) q[+((61D EJ+EJ'+EJ' @D

Also, conditional on the default of member j and in the absence of S, the probability
that the loss to the CCP exceeds (a given) S > 0 and the members’ prefunded and
unfunded DF assets is given by

S g\ (1+pD S e
P(Lé > O) = q[l + ((q_D) — 1) (—Ej + E_] — ﬂCl)] . 4.8)

Proposition 4.5 shows that the likelihood that the loss to the CCP exceeds S plus
the members’ prefunded and unfunded DF assets has a maximum conditional on the
default of member 1, the member to which the CCP has the largest exposure. Simi-
larly, the probability that the loss to a nondefaulting member exceeds its prefunded
DF assets is at its highest conditional on the default of member 1.

Suppose that S is formulated according to (4.5). When S = 0, we can write
P(lﬂ,i1 > D;) < w < gp. We denote the upper bound for P(l~,l.1 > D;) that corre-
sponds to S = 0 and S formulated as in (4.5) by 7¢. For instance, when = = ¢p
(ie, when Sp, = (1 — ¢1) D), setting S=0 gives

q 1/a —a
ﬁ0=q[1+((_) _1)(2_01)} . 4.9)
4D

This quantity could be interpreted as follows: if all members accept the risk of their
DF assets being depleted with probability 7g, then the second-layer SITG will not
be required.?®

%5 The proof of Proposition 4.5 is omitted as the method of proof follows that for Propositions 4.3
and 4.4.
26 We note that 7o is an increasing function of ¢, which achieves its hypothetical minimum at
c1=0.
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Now, working backward and given our formulation of S with the target loss proba-
bility # < ¢gp, we can specify the S that corresponds to a given target loss probability
7, where T < 7¢. For instance, suppose that 7 = P(L} > D;). Solving for S gives
that

(q/7)V/* — (q/m)"/®
(q/qp)V* —1

where 7 < 79 < gp.?’ Note that setting 7 = gp and so S;. = (1 — ¢1) D gives that

(q/7)V* —1
(q/qp)V/* —1

In our Pareto-based framework, designing S and S with target loss probabilities

P(L} > D) =7 5:( +cl—1)D, (4.10)

P(L}>D) =7 S:( +cl—2)D. 4.11)

7 and 7 ensures that the basic and overarching ICC (3.19) is satisfied:

P(L] > Di) < P(L} > D;) <qp
———

T

forany j # i # 1. In sum, our formulation of S and S in this section satisfies the
ICCs (3.9), (3.12) and (3.19) developed above and will result in

P(L] > D;) < P(L) > 0) < P(L! >0) <gp. (4.12)

The last two inequalities follow from our results in Section 3, and the first inequality
follows from the definitions of L{ and L(]).

REMARK 4.6 It is important to note that under Assumption 4.1 SL and SU, which
were introduced in the previous section, can be viewed as special cases of our general
Pareto-based framework. To see this, consider Scenario A in the previous section and
note that (4.10) can also be written as

(q/®)"* = (q/m)"* I)D _g
(q/qp)V/* —1

for any § > 0. When the target loss probability is set to 7 = P(i(l) > 0), Propo-
sition 4.5 and the above formulation result in Sg = BD(1 — ¢;). Now, consider

P(L} > D) =7 52(

Scenario B, where the specific incentive compatibility objective is satisfying (3.27).
It is clear that Sy = BD(1 — cy) satisfies (3.27). It is also clear that under Sy the
basic ICC (3.19) holds with P(L! > D;) = 7.

271n the formulation of S the first term on the right-hand side is positive because the target
probability 7 is set to be less than 7g.
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5 CAPITAL REGULATION

Using the EVT (Pareto)-based framework, we introduce a lower bound for the CCP
capital requirements and give a numerical example to show how this varies as a
percentage of the DF. In Appendix A6 our framework is used to test the adequacy of
Basel CCP risk capital rules.

5.1 Minimum CCP capital requirements

As discussed above, the CCP’s equity capital contribution to the default waterfall
could be viewed as a lower bound on its regulatory capital. Our framework gives the
following lower bound for the minimum CCP capital requirements:

. [ @/t ]
S S=|—""———-1|D, 5.1
* [(q/qml/a _ oD

where S and S are the first- and second-layer SITG given in (4.5) and (4.10). Also,
recall that the first target loss probability 7 = P(L} > 0) and the second target loss
probability 7 = P(ii1 > Dj) satisfy 7 < m < gp < ¢. As discussed above, a
simple way to ensure that S > 0 is by setting 7 < 7o, where 7 is given in (4.9) and
derived under S = 0 and S = (1 — ¢1)D.

It is not difficult to show that, as the number of members increases, S + S increases
under our framework. To see this, note that 7y is an increasing function of ¢;. So,
when the number of members increases, ¢; decreases; this would reduce 7o, which
in turn reduces the target loss probability 77 in our SITG formulation. And when 7
decreases, the total level of S + S increases. In other words, all else being equal, as
the number of members increases, higher levels of SITG are required to mitigate risk
management agency problems. This can be contrasted with the work of Kuong and
Maurin (2023), where a major implication of their contract-theoretic model rational-
izes the documented empirical observation that larger CCPs allocate smaller amounts
of their own capital to the default waterfall.

It is worth emphasizing that our proposed CCP regulatory capital lower bound
(5.1) is grounded on the incentive compatibility framework developed above. It also
depends only on parameters and variables easily accessible to and monitored and
controlled by CCPs and their regulators. The following example can offer insight, as
it shows how the proposed lower bound varies as a function of 7, gp, ¢ and «.

EXAMPLE 5.1  Table 1 reports the ratio of the lower bound on regulatory capital
to the DF for different values of «, ¢, gp and 7. First, note that D is governed by
the confidence level 1 — gp used to define DF stress scenarios. Note that D is a
decreasing function of gp. So, all else being equal, (S + S )/ D can be viewed as an
increasing function of gp.
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TABLE 1 The total SITG, S + S, as a fraction of DF D, computed from (5.1), for different
values of parameters «, ¢, gp and 7.

S+S)D o q gqp =
0.67 2 100 50 35
0.18 2 100 50 45
0.09 2 200 100 95
1.62 2 100 30 10
2.51 2 100 80 50

17.32 2 100 80 10
3.44 3 100 50 10
0.61 3 100 50 35
1.34 3 100 30 10
0.36 4 100 50 40
0.59 4 100 50 35
0.67 4 80 60 50
3.17 4 70 40 10
0.3 4 100 80 75
0.16 5 100 50 45
0.57 5 100 50 35
2.93 6 100 50 10
0.57 6 100 50 35
0.62 6 100 80 70

q, gp and 7 are given in basis points.

Recall that to have S > 0, 7 < 7o must hold. Table 1 reports the values of 7
for which there exists ¢; € (0,1) and so 779 € (0,gp), where & < 7o holds. For
instance, consider the first row of the table, with « = 2, ¢ = 0.01 and gp = 0.005.
Setting ¢; = 0.01 gives 79 = 0.003, while setting c; = 0.9 gives 79 = 0.0047. So
there exists a 7o for which 7 = 0.0035 falls below 7g.

In interpreting Table 1, it is also useful to view o, g and gp as given and note that
higher target loss probabilities 7 are generally associated with lower (S + S)/D
ratios. In other words, to obtain lower loss probabilities, the lower bound on the
regulatory capital S + S should be formulated as a higher percentage of DF D. For
instance, consider the two rows associated with o« = 5. To achieve 7 = 0.0045,
the lower bound on capital requirements becomes 0.16D, while lowering this loss
probability by roughly 22% to 7 = 0.0035 requires a more than 250% increase in
CCP capital contributions, S + S =0.57D.

As discussed in Section 1, this numerical example shows that a total level of SITG
below 15%—-20% of the DF cannot be produced in the realistic part of our model
parameter space. This contrasts with the current practice, which has been empirically
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summarized by Thiruchelvam (2022) and Walker (2023). The ratio of total IM to the
total DF may also vary widely across CCPs: IM can be 10 times larger than the DF
(Ghamami and Glasserman 2017). Using 2015-17 CCP quantitative disclosure data,
Huang (2019) estimates an average SITG of about US$38 million and an average IM
of about US$14 billion across 9-10 investor-owned CCPs. When the DF is 10% of
IM, SITG becomes 2.7% of the DF. Under our framework, this level of SITG may
not adequately mitigate CCP risk management incentive distortions.

The current regulatory regime is not risk-based; that is, it is not based on eco-
nomic or financial-economics analysis. Our framework could be used to improve
CCP capital regulation.

REMARK 5.2  The CCP regulatory capital lower bound in the more general
Cover n DF setting is derived in Appendix AS. Systemically important derivatives
CCPs often operate under a Cover 2 DF, for which the lower bound becomes

= [( (/) -1 1
St 5= [((Q/CJD)I/“ - 1)(01 + 02) - I}Ds’z' 62

This follows from (A.25) in the appendix. Recall that in the Cover 1 case we have
D = Ej, and the total DF is Ds» = E; + E, in the Cover 2 case.?® It is important
to note that under similar incentive compatibility structures, we have 7, < 7. This
can resultin S + 52 >S5 +S.

5.2 Optimal capital regulation

The lower bound on CCP equity capital (5.1) focuses on ICCs and central clearing
risk management agency problems. It abstracts away the costs of CCP capital and
CCP failure. Consider the case of a single representative CCP. Recall our sketch of
the CCP objective function under outside ownership (see (2.8)). Social welfare can
be represented by

¢V — E[L] — E[L] — ¢(E)) — ¢sQ(S(n), S(7). Ey), (5.3)

where, under the incentive compatibility framework, the first layer of SITG, S(r),
can be viewed as a decreasing function of the target loss probability 7, and given
7, the second layer of SITG, S(7), is a decreasing function of the second target
loss probability 7. Given members’ IM and DF assets, the social planner’s objective
would then be to find the optimum SITG and E that maximize (5.3). In addition
to IM and the DF, if the Pareto tail exponent, «, is also given, the social planner’s

28 As described in Appendix A5, in the more general Cover n DF setting, we have further simplified
the notation by assuming that Exy < Ey_; < --- < E» < Ej. That is, under the Cover 7 rule,
we write D = Y 7 Ep.
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problem could be equivalently viewed as finding the optimum z, 7 and E; that
maximize (5.3). Optimal SITG levels could then correspond to target loss proba-
bilities under which some of the ICCs may be satisfied and some may not hold
from the members’ perspective. Optimal SITG levels are beyond the scope of this
paper, which instead, focuses on developing an incentive compatibility framework
that incorporates SITG into policy makers’ revised objective function. That is, given
the CCPs’ default waterfall, we replace the social planner’s inaccurate objective func-
tion (2.10) with a more accurate one (5.3) and link S and S to a set of ICCs under
which some of the CCP risk management agency problems can be mitigated.

6 MONOLAYER DEFAULT WATERFALL

Large derivatives CCPs do not often mutualize the pool of IM to cover defaulting
member losses. It is the DF, the layer of collateral collected in addition to IM, that can
be mutualized to cover losses. The default waterfall at some CCPs, in particular the
largest securities clearinghouses in the United States, could be different. Securities
CCPs in the United States often collect IM from their members and mutualize the
pool of IM to cover losses. Total IM under the monolayer default waterfall plays the
role of the DF at CCPs with the more typical multilayer waterfall.

In this section we analyze the monolayer default waterfall by modeling and esti-
mating losses from the perspectives of a CCP and its members. We show, that
compared with CCPs with the multilayer waterfall structure, clearinghouses with
a monolayer default waterfall may need to have significantly higher levels of SITG
to mitigate moral hazards linked to risk management incentives.

Monolayer CCPs have become increasingly important, as a broader central clear-
ing mandate is a critical element of the government securities-market reform pro-
grams initiated by the G30’s Working Group on Treasury Market Liquidity after the
emergence of the Covid-19 pandemic.?

6.1 CCP perspective

In the absence of SITG, the exposure of a monolayer CCP conditional on the default
of member j can be written as

Ly = (U — )™,
where M = Z;N=1 M; and j = 1,..., N. To compare monolayer and multilayer

default waterfalls, we make the natural assumption that U;, the random variables
representing the CCP’s exposure to member defaults, are drawn from the same

2 See the original G30 report (Group of Thirty 2021) and the subsequent “status update” report
(Group of Thirty 2022).
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distribution under both waterfall structures. Recall that the CCP’s exposure to the
default of a member under the more typical multilayer waterfall structure is written
as L) = (U;y — M; — D)*. As will be explained shortly, in practice, it is often the
case that

P(L} > x) < P(L} > x) (6.1)

for any x = 0. In other words, the monolayer CCP is less exposed to the default
of its members than the multilayer CCP. It is well known that, in CCPs operating
under the multilayered default waterfall, total IM can be notably larger than the total
DF. In fact, M can be more than 10 times larger than D, especially in large CCPs
(Ghamami and Glasserman 2017).3% Note that (6.1) holds when

M—M;>D (6.2)

forany j = 1,..., N. This condition is satisfied unless a CCP has an unrealistically
high concentration ratio c;. It should be intuitively clear that, since collateral in the
form of IM often dominates DF, sharing IM to cover losses could be beneficial from
the CCP’s perspective.’!

6.2 Member perspective

It is also straightforward to see that, compared with multilayer CCPs, in monolayer
CCPs, surviving members are more exposed to the defaulting member losses. Note
that SITG under the monolayer waterfall structure, denoted by S, comes into play
right after the defaulters’ IM. Conditional on the default of member j, potential
losses in terms of the IM contribution of surviving member i can be written as

. M;
U —M; —S)T——- |
(U =My =" 5
where i # j. In the scenario where surviving member losses cannot exceed M;, we
have
L U —M; — St
g:mmm(’ J )J. (6.3)
M —M;

Comparing the two waterfall structures, we now show that members could incur
larger losses when the IM pool is mutualized in the absence of an additional and
separate prefunded DF.

30 According to the Global Association of Central Counterparties (CCP12 2023), the total required
IM for a selected 24 CCPs was US$956.6 billion, and the total required DF was US$49.1 billion,
in 2022 Q4. Aggregated over 24 CCPs, the ratio of IM to the DF was around 19.5 at the end of
2022.

31 Qur analysis does not take into account recovery schemes such as variation margin haircuts (Cont
2015).
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PROPOSITION 6.1  If the SITG is sized similarly under both types of waterfall
structures, we have

P(L] > 0)> P(L! > 0), (6.4)

where i # J, and I:l' and L{ are defined in (6.3) and (3.2), respectively. Let 01.2
denote the variance of U;. Further, if U; Jo; ~ T(0,v) has a mean-zero Student t
distribution with v > 1 degrees of freedom, then for any loss level x > 0,

P(L] > x)> P(L] > x). (6.5)

REMARK 6.2  Student ¢ distributions belong to the class of elliptical distributions,
which encompasses a large battery of models used in finance and economics, espe-
cially in risk management (Andersen and Dickinson 2018; Cont and Kan 2011;
Ghamami and Glasserman 2019; Ivanov 2017). Student ¢ distributions include the
normal distribution as a limiting case (for v — oc0). Since U;, the CCP’s exposure to
member i, captures in part the portfolio-value changes over the MPOR, whose length
is often up to five days, it is not unrealistic to assume that U; has a mean of zero.

6.3 CCP capital contribution

If the CCP does not allocate its own capital to the default waterfall,** we have
P(L] >0)= PU; > Mj) = ¢,

where 1 —gq is the confidence level associated with the VaR-based IM. That is, condi-
tional on any member’s default, the probability that a surviving member’s IM would
incur losses is ¢. Comparing this member loss probability ¢ with the CCP’s loss
probability conditional on a member’s default,

P(L} >0) = P(Uj > M; + ZM,-),
i#j
it is clear that members could incur disproportionately larger losses than the CCP.
To perfectly align largest-counterparty default loss probabilities between the CCP
and its members, the CCP should contribute ZZN=2 M; to the loss waterfall. That is,
setting S=M-—M, gives

P(L! >0)=P(L}>0) (6.6)

32 Securities CCPs often have only one layer of SITG, which is denoted by S in our analysis. It is
not difficult to extend our analysis to formulate the second layer of SITG for monolayer CCPs.
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for any i # 1. Note that condition (6.6) is analogous to ICC (3.12), which is satisfied
under (3.10) in multilayer CCP. We will return to this formulation of SITG toward
the end of this section.

We now use our Pareto-based framework to draw a useful comparison between
monolayer and multilayer default waterfalls. We continue to assume that expo-
sures U; are drawn from similar distributions, and that E; are quantified based on a
given confidence level 1 —¢gp under both waterfall structures. Using Assumption 4.1
and employing the method of proof for Proposition 4.4, we have

) 1/a S -«
P(L! >0)=q|:1—|- ((i) —1)1} :
qp E;

which implies that P(I:l] > 0) < P(Lil > 0) for any j # i # 1. We now specify
SITG corresponding to a given target loss probability 7. For instance, suppose that
T = P(lv,l1 > 0), where 7 < ¢p, associated with the largest member’s default.
Solving for S yields

. . Ve _ 1
PUI>0) =7 e §= (D=1 6.7)
(q/qp)"* -1
Choosing 7 = ¢p simplifies the above equation to
Sy = E1. (6.8)

That is, S’q p = D under the Cover 1 DF rule. Consequently, if SITG is formu-
lated according to (6.8), then in the event of the default of the largest member, the
probability that a surviving member would incur any losses will be gp < ¢. This for-
mulation of SITG is illuminating as it provides a way to directly compare monolayer
and multilayer CCPs in terms of the required capital contribution to the waterfall that
would guarantee similar default exposures from the perspective of members. That is,
the two waterfall structures result in equal member loss probabilities (conditional on
the largest member default),

P(L} >0)=P(L! >0)=¢qp <q,

when the monolayer CCP operates under S‘Q p = D while the multilayer CCP con-
tributes S = (1 — c¢;)D. Given that 0 < ¢; < 1, this result shows that policy makers
may need to require higher levels of SITG at monolayer CCPs so that members are
exposed to similar levels of default risk under both types of waterfall structures. All
else being equal, the higher the concentration ratio, the greater the difference between
CCP equity capital contributions under monolayer and multilayer default waterfalls.

The incentive compatibility framework can also be used more directly to com-
pare monolayer and multilayer CCPs. Recall ICC (3.12) under the multilayer default
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waterfall in Scenario A. The analogous ICC for the monolayer CCP can be written
as

P(L}>0)=P(L}>0) =x. (6.9)

As discussed above, the above ICC is satisfied under S=M-M 1, Which can be
written as

St =(1—-c)M, (6.10)

by Lemma A2 in the online appendix, when we assume that U; /o; ~ T(0,v) has
a mean-zero Student ¢ distribution with v > 1 degrees of freedom. We note that
under (6.10) the following basic and overarching ICC in the monolayer case is also
satisfied:

P(L! >0) < P(L} > 0) 6.11)

forany j # i # 1. It is important to note that the above economic arguments were
initially used in the design of SITG that led to S¢, = (1 — c¢1) D under the multilayer
waterfall. In short, when normalized exposures U; have heavy (Pareto) tails, ICCs
require

Sy = %SL. (6.12)

In other words, the capital contribution of the monolayer CCP to the default waterfall

may need to be several multiples of that of a similar CCP with a multilayer waterfall.

To complete our comparative analysis of incentive structures associated with

monolayer and multilayer CCPs, recall Scenario B under the more typical default

waterfall, where Sy = (1 — ¢y )D would guarantee that ICC (3.15) holds. We note
that setting

Su=M—My =(—cy)M (6.13)

leads to a similar incentive structure for the monolayer CCP: under (6.13), the
analogous ICC,

P(L] > 0)< P(L} > 0), (6.14)

holds for any j # i # 1. Consequently, when enforcing this second incentive struc-
ture for monolayer and multilayer CCPs, we arrive at the same result, (6.12). That is,
the SITG of the monolayer CCP would need to be M/ D times larger than the SITG
under the multilayer default waterfall.

In summary, our results illustrate that, compared with multilayer clearinghouses,
CCPs operating under the monolayer structure should allocate more capital to the
default waterfall.
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7 CONCLUDING REMARKS

Recent distress in the banking sector highlights that post-GFC recovery and resolu-
tion frameworks may not work well in practice and may need to be improved. The
Silicon Valley Bank (SVB) collapsed in March 2023. While the SVB was subject to
bank-level resolution planning, and most of its assets were held in the bank, the res-
olution plans could not be implemented successfully (Clancy 2023). Effective CCP
capital and SITG regulation is at least as important as improving CCP recovery and
resolution frameworks.

We have proposed a robust and objective framework that can be used for design-
ing CCP SITG requirements. Our framework is grounded in ICCs that capture central
clearing risk management agency problems. The proposed SITG formulas are sim-
ple and readily implementable using data available to CCPs and regulators. Compar-
ing our SITG formulations with CCP public data and the empirical evidence from
recent CCP quantitative disclosures (Ghamami and Glasserman 2017; Huang 2019;
Thiruchelvam 2022; Walker 2023), we conclude that investor- and member-owned
CCPs may need to allocate more capital to default waterfalls.

Central clearing will play a key role in the reform of the US Treasury market.
The resilience of clearinghouses that will be at the center of the US Treasury mar-
ket is of critical importance.*® To diversify the supply of Treasury market liquidity
under stress, the first recommendation of Group of Thirty (2021) was that the Federal
Reserve should create a standing repo facility (SRF) that provides very broad access
to repo financing for US Treasury securities on adequate terms. The SRF that the Fed-
eral Reserve subsequently created in 2021 did not provide such access. This could
have been in part due to concerns about creating moral hazards that would increase
systemic risks, as broader SRF access may incentivize firms to increase their lever-
age (Group of Thirty 2022). The G30 have suggested that this moral hazard could
be mitigated by centrally clearing repos provided by the SRF. Our investigation indi-
cates that this agency problem may be counteracted when CCP risk management
agency problems are mitigated effectively.
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APPENDIX TO “SKIN IN THE GAME: RISK ANALYSIS OF CENTRAL
COUNTERPARTIES” BY RAMA CONT AND SAMIM GHAMAMI

A.1 Proof of Proposition 4.3

Note that

(A.1)

D-D
P(L}>x):P(U1>M1+D1+S+x(—1)).

D;
Since D; = ¢; D, we can write

1_
P(L}>x)=P(U1>M1+D1+S+u).

Ci

Set A= D; + S + x(1 — cq1)/ci. The probability on the right side above can be
written as

P(Ul—Ml >A)=qP(U1—M1 >A|U1 >M1), (A.2)

where ¢ = P(U; > My). Recall that (U; — M1)|U; > M; ~ Pa(a, k1), and so

(A.3)

A —O
P(U, — My > AU, > My) = (Kl + ) .

K1

We now remove the dependence of the term on the right side above on «;. To do so,
note that

gp = P(Uy > My + D) =qP (Uy > My + D | Uy > My).

Again, using our modeling assumption (U; — M1)|U; > M; ~ Pa(a, k1), we can
write

D—a
P(U1>M1+D|U1>M1)=(K1+ ) ,

K1

and so

D q 1/
- = (—) 1. (A4)
K1 4D

We note that (A.2)—(A.4) give (4.4). This completes the proof. O



A.2 Proof of Proposition 4.4

The proof is similar to the proof of Proposition 4.3; we only need to modify the last
part of the proof of Proposition 4.3 as follows. Note that

ki +Ej\
P(U;j > Mj + Ej) = qp = qP(U; > M; + E;|U; > M;) =Q(%) :
J
This gives

g\ | E , _ Ej
—_ —1=—, whichleadsto«k; = — 1 T
qp Kj (q/qp)V/* —1

This leads to (4.6) as its right side does not depend on ;. O

A.3 Proof of Proposition A4
We use the following lemma to prove Proposition A 4.

LEMMA A1 Under Assumption 4.1, we have

W —a+1
E[(UI—MI—W)+]=%(KI:1 ) . (A.5)

where W > 0 is a constant.
PROOF OF LEMMA A1 Note that
E[(Uy — My = W)*] = E[(U1 — M1)14] — WP(A) (A.6)

where 14 is the indicator of the event A = {U; — My, > W}. First, consider the
expectation on the right side above. The conditional probability density function of
(U1 — M1)|U1 > M] is

—a—1
k1 +u\“
K1 ’

o
filw) = —(
K1
where u = 0. Note that
E[(Uy — My)14] = qE[(Uy — My)14 | Uy > My].

We use integration by parts to calculate the conditional expectation above to derive

E[(Uy —My)14] = Q/Wooufl(“)d“ ZCI(O[Z/_-F Kl)(W+K1)_ . (AT

1 K1
Next, consider the last term on the right side of (A.6) and note that
W —
P(U - My > W) =q("1 + ) . (A.8)
K1

It is straightforward to see that (A.7) and (A.8) give (A.5). This completes the proof.
O



A.3.1 Proof of Proposition A4

Using Assumption 4.1, we can write

ki + Ei\¢
P(Ui_Mi>Ei):CID:‘I(;) ,

Ki
and so we have

E;
" @/ -1

Lemma A 1 and the above expression for «; give

Ki

i E[U; — M; — D, = ZalL+ c1(q/qp)!® — D]+

, A9
2 (@ = Dlla/a0) " 1] 42

where £ = ZZN=1 E;. Given our formulations of S and S in (4.2) and (4.11), we
have derived (5.1). Dividing the right side of (5.1) by the right side of (A.9) gives
(A.30). This completes the proof.

A.4 Proof of Proposition 6.1
Note that

v . M — M;
P(L] >x)=P(U_,-—M, >S+XT]), (A.10)
i
forany x = 0 and i # j.Now, consider the more typical multilayered waterfall (in
the presence of a separate prefunded default fund, where the IM pool is not mutual-
ized). Conditional on the default of member j, the probability distribution of losses
to member i’s default fund contribution can be written as

. D—D:;
P(L{>x)=P(U,-—M,~>D,~+S+x D").
1

Clearly, when U; are drawn from the same distribution under both waterfall struc-
tures, setting x = O and § = S gives (6.4). This completes the first part of the proof.
We use the following Lemma for the second part.

LEMMA A2  IfU;/o; ~ T(0,v) has a mean-zero Student-t distribution with v >
1 degrees of freedom then

E; _ M;
= —5 ,
Zj:l Ej Zj:l M;

where either VaR or ES is used in calculating M; and E;.

(A.11)



Itis not difficult to see that Lemma A 2 gives M; /(M —M;) = D; /(D—D;). Con-
sequently, (6.5) holds for any x > 0 and i # j as long as D; > 0. This completes
the proof.

PROOF OF LEMMA A2 The proof uses standard results in the theory of quantita-
tive risk management (McNeil et al 2015).

First, suppose that M; and E; are calculated based on VaR. That is,
M; = VaR,(U;) and E; = VaR,, ((U; — M;)*) with gp < ¢ < .01. Given that
Ui/o; ~ T(0,v), it is straightforward to show that M; = o;t,, where t, denotes the
inverse of Student t cumulative distribution function with mean zero and degrees of
freedom v evaluated at 1 — g. This results in

M,‘ . o;
N — N :
> i=1M;j Zj=1 0j
Since M; = o;ty and U;/o; ~ T(0,v), it is straightforward to show that E; =
0i(tq,, —tq). Consequently,

(A.12)

E,' _ (o]
N - N '
Zj:l E; Zj:l 0j

Second, suppose that M; and E; are calculated based on ES. When U;/o; ~
T(0,v), it is well-known and can be easily shown that,

t) (Vv +t?
M; =ESq(Ui)=0ig(q)( q),
q

(A.13)

v—1

where g denotes the Student t probability density function with degrees of freedom
v and mean zero. To calculate E; = ES;,((U; — M;)™), we use the following
well-known result (McNeil et al 2015, Ch.2),

ES,, (Ui — M;)™) = ESy, (U;) — M;,

to derive
tgr) (V + 12 (t) (Vv +12
ES,, (U; — M;)™)) =0i(g( 4D ( qD) _8 q)( q)),
qp v—1 q v—1
So, (A.12) and (A.13) hold under ES and Student ¢ distribution. This completes the
proof. O

A.5 Cover-n Case

We now extend our analysis to the scenario where the prefunded default fund is sized
under the cover-n rule; 2 < n < N. To simplify the notation, suppose that

En <Eny1<---<Ey<Ep.



In what follows, when necessary, we append a subscript or superscript n to loss
variables and other model components to differentiate the cover-n case from the
cover-one analysis presented in the main body of the paper. Under the cover-n DF,

we can write )
Dsn =) En.
i=1
Suppose that DF is allocated to members proportional to E;, and member i’s DF
contribution is denoted by D; .

As before, default losses from both member and the CCP’s perspective are con-
ditional on the default of a single member.>* We note that under the cover-n DF,
the basic results of Section 3 remain unchanged. Specifically, (3.6)-(3.9) and (3.16)-
(3.19) continue to hold under the cover-n rule. However, while P(L(l) > 0) = ¢qp
under the cover-one DF, we have

P(Ly, > 0) = P(U; — M > Ds,) < qp.

under the cover-n rule. Also, in the absence of any capital contributions by the CCP,
we will have
P(L}, > Diy) = P(Ui = My > Dy,) < qp,

under the cover-n rule.

A.5.1 Pareto-based SITG: First Layer

Under Assumption 4.1, the distribution of Ll.1 , can be expressed in terms of E7. For
the cover-n DF, we can derive

P(L} >x)=¢q|1+ (i)l/ Z + (I—Cl) X -
i,n . o El

(A.14)

The proof is omitted as it is similar to the proof of Proposition 4.3.
Given (A.14), the target loss probability of m,, = P(Lil,n > 0), where 7, < ¢p,
results in the following SITG formulation

(q/m)Ve =1
Sy = (—a - ch)El. (A.15)
@/gp)V*—1 =

31t is straightforward to carry out the analysis conditional on n = 2 simultaneous defaults.

351t is also straightforward to extend our analysis to derive scenario-B SITG formulations in this
more general setting. That is, our framework could be used to construct ranges for the first and
second layer SITG that satisfy a battery of incentive compatibility constraints.



Simple algebra gives the following second expression,

(q/mn)V® — 1)( c1 ) }
S, = ,, —¢1 |Dyn. A.16
[((q/qp)l/a N\ )@ (A-16)

This formulation is useful as S, is more explicitly written as a percentage of total
DF. Recall that we have formulated SITG as a percentage of total DF in the main
body of the paper in the cover-one case. We also note that setting 7w, = gp gives

n
Sypn = (1 - ch) E. (A.17)
k=1

Conditional on the default of member j 7 1 and under the cover-n rule, we can
derive

/ a)" s S, x=o)]”
P(Li7n>X)=q 1+ (q—D) —1 Ck+E—+E— o .
k=1 J ;oo

(A.18)

The proof is similar to the proof of Proposition 4.4 and so is omitted.

Comparing (A.14) and (A.18), we can write P(L{, > x) < P(L}, > x). Conse-
quently, formulating S, according to (A.15) with the target loss probability 7, < gp
gives

P(Ly, >0 < P(L],>0)<qp (A.19)
where L], = (U; — M; — Dy,,)™. Note that
P(L!, >0) <qp.
is the basic and overarching ICC (3.9) we introduced in the cover-1 DF setting.

A.5.2 Pareto-based SITG: Second Layer

Conditional on the default of member 1, the probability that the loss of member i

exceeds its default fund contributions becomes>°

1/a n 5 —a
~ q D k=1 Ck Sn Sn
P(L! > Di,) =q|l ) )&k o o ‘
(Lin > Din) q[ * ((CID) )( 1 * E, * E;
(A.20)

This is to be compared with the first part of Proposition 4.5 in the cover-one case.
Note that with S,, being sized according to (A.15) and setting S, = 0, we will have

36 The proof is similar to the proof of Proposition and so is omitted.



P(liil,n > D;n) < m, < gp. We denote this upper bound corresponding to S, =0
by ﬁ(),n.
Given S, as in (A.15), fixing the second target loss probability 7,,, where 77, <

To.n < mp < ¢p, and working backwards, we have

s _ [(a/m)"* —(q/mm)"® “ Yy ]
Sn_[ (q/qp)"/* -1 +(1 cl)};% Ey. (A21)

Note that for the special case where 7, = ¢p, S, becomes
< _ [(q/an)"* —1 ( ! ) - ]
S =|———+(1—— cr —1|E;. (A.22)
" [(61/610)1/“—1 c1 k;

Similar to cover-one case, for a CCP that operates under the cover-n rule, our
SITG formulations lead to

P(L, > Din) < P(L}, >0) < P(L!, > 0) <qp. (A.23)

i,n

That is, our Pareto-based formulations of S,, and §n will lower members’ default
loss probabilities below ¢p.

REMARK A3 We can write (A.21) as

. (q/ﬁn)l/“—m/nn)l/a)( cl ) ]
S, = - —1|Dyp. A24
[( @/ap)e—1 ST ) O we (A9

This formulation is useful as it explicitly expresses S, as a fraction of total prefunded

default fund in the cover-n case. In short, it is insightful to compare S, formulated
in (A.24) with S formulated in (4.10) in the cover-one case. We also note that

3 (q/ﬁnw“—l)( o ) ]
Sy + Sy = : — 1| Dy A25
- [((q/cm)l/a N\ (A.25)

This is our proposed lower bound on minimum CCP regulatory capital requirements
under cover-n DF. It is useful to compare this lower bound with the lower bound
(5.1) derived under cover-one DF.

A.6 CCP Risk Capital

CCP risk capital refers to capital requirements for bank exposures to CCPs (Basel
Committee on Banking Supervision 2023). Policymakers sometimes borrow ideas
from bank capital regulation when regulating CCPs. For instance, in the context of



credit and counterparty risk capital, a CCP is viewed as a financial firm holding
portfolios of financial assets with N counterparties. The CCP’s minimum risk-based
capital requirement is then a percentage of its risk weighted assets, where the risk
weights represent the credit quality (default probability) of members (counterpar-
ties) and assets represent the CCP’s exposure to its members net IM and DF over a
given time period, (Ghamami 2015). Adopting the classical bank capital regulation
framework for CCP capital regulation can be seen in the Basel Committee’s formu-
lation of CCP risk capital. In our setting, the Basel Committee’s hypothetical CCP
capital requirement is formulated as

N
Keep =kr x Y E[U; — M; — D] ¥ o, (A.26)

i=1

where the capital ratio & is set to 8%, and the minimum requirement for risk weights
w; is equal to 20%. K., with this fixed risk weight is then used to formulate the CCP
risk capital rule. More specifically, the amount of capital that a bank needs to hold
against its exposure to a CCP is an increasing function of K¢¢p.

Since the sum of first and second layers of SITG can be viewed as a lower bound
for CCP capital requirements, there are different ways where S + S can be used
to test the adequacy of CCP risk capital. The following approach will be insightful.
Note that if the inequality

Keep = S + 8, (A27)

does not hold, regulators may need to revisit the definition or formulation of K..p,
adjust k, or w, or they can replace K., with § + S. Since represents the average
credit quality of clearing members, we have 0 < @ < 1. This suggests that 0 <
wk, < 1. Consequently, if

N
S+8=Y EU - M; — Di]", (A.28)

i=1

holds under our framework, policymakers can revisit CCP risk capital. That is, our
framework implies that under (A.28), the CCP risk capital rule can underestimate
bank exposures to CCPs. Now, consider the following ratio,

S+ S
R = ¥ . (A.29)
Y i1 ElUi — M; — D]t

i=1

Proposition A 4 derives a useful expression for R.



TABLE A.1 Lower bound R for the ratio of SITG to K., for different values of «, c1,
q, 4p, 7o, and 7. We note that R > 1 in most cases unless the concentration ratio is
unrealistically small and # is close to 779, which gives S close to zero. Rows in italics
report the part of the parameter space producing R < 1.

R« ¢ q(bps) gp(bps) 7o (bps) (bps)
419 2 .05 100 50 31 20
210 2 .05 100 50 31 30
856 2 .10 100 50 31 20
1.08 2 .10 80 70 63 60
45 2 .15 100 70 54 45

3786 2 .20 100 50 33 10
766 2 .20 100 50 33 32
5896 2 .30 100 50 34 10
1883 3 .10 100 50 30 10
528 3 .10 100 50 30 29
396 3 .20 100 50 32 10
385 3 .20 70 60 50 53
.66 3 .01 100 50 29 25
16.6 4 .20 100 40 22 20
68.19 4 .40 100 20 9.69 9
481 4 .15 90 70 57 50
1.76 5 .01 100 50 27 10
69 5 .01 100 50 27 25
1119 5 .15 100 50 30 25
866 5 .15 100 50 30 29
69 6 .01 100 50 27 25
431 6 .10 100 80 66 50
730 6 .10 100 50 29 25

PROPOSITION A4 Under Assumption 4.1, the lower bound (A.29) for the ratio of
SITG to Basel CCP capital, Kccp, is given by

! (3 () Rt

(A.30)

The following numerical example shows that condition (A.28) holds in most parts
of the model parameter space.

EXAMPLE A5  Table A.1 reports R in (A.30) for different values of the tail index
o, concentration ratio cj, loss probabilities associated with IM and DF confidence
levels, g and gp, and member target loss probabilities associated with unfunded DF,



7. As discussed earlier, to have S > 0, the target loss probability 7 should satisfy
7 < i, where 7 is defined in (4.9).37 Note that R is an increasing function of c;.
It is clear that R > 1 in most parts of the parameter space unless the concentration
ratio is very small and # is close to 7, giving values of S close to zero.

In short, Proposition A4 along with the above numerical example indicate that
capital rules on banks due to their exposures to CCPs may not sufficiently absorb
central clearing risks.

37 Recall that 77 is the loss probability associated with unfunded DF when we set S = (1 —c¢1)D
and § = 0.



